64 research outputs found

    Microstructure simulations

    Get PDF

    Tuning the magnetic ground state of a novel tetranuclear Nickel(II) molecular complex by high magnetic fields

    Full text link
    Electron spin resonance and magnetization data in magnetic fields up to 55 T of a novel multicenter paramagnetic molecular complex [L_2Ni_4(N_3)(O_2C Ada)_4](Cl O_4) are reported. In this compound, four Ni centers each having a spin S = 1 are coupled in a single molecule via bridging ligands (including a \mu_4-azide) which provide paths for magnetic exchange. Analysis of the frequency and temperature dependence of the ESR signals yields the relevant parameters of the spin Hamiltonian, in particular the single ion anisotropy gap and the g factor, which enables the calculation of the complex energy spectrum of the spin states in a magnetic field. The experimental results give compelling evidence for tuning the ground state of the molecule by magnetic field from a nonmagnetic state at small fields to a magnetic one in strong fields owing to the spin level crossing at a field of ~25 T.Comment: revised version, accepted for publication in Physical Review

    Antiferromagnetic Dimers of Ni(II) in the S=1 Spin-Ladder Na_2Ni_2(C_2O_4)_3(H_2O)_2

    Full text link
    We report the synthesis, crystal structure and magnetic properties of the S=1 2-leg spin-ladder compound Na_2Ni_2(C_2O_4)_3(H_2O)_2. The magnetic properties were examined by magnetic susceptibility and pulsed high field magnetization measurements. The magnetic excitations have been measured in high field high frequency ESR. Although the Ni(II) ions form structurally a 2-leg ladder, an isolated dimer model consistently describes the observations very well. The analysis of the temperature dependent magnetization data leads to a magnetic exchange constant of J=43 K along the rungs of the ladder and an average value of the g-factor of 2.25. From the ESR measurements, we determined the single ion anisotropy to D=11.5 K. The validity of the isolated dimer model is supported by Quantum Monte Carlo calculations, performed for several ratios of interdimer and intradimer magnetic exchange and taking into account the experimentally determined single ion anisotropy. The results can be understood in terms of the different coordination and superexchange angles of the oxalate ligands along the rungs and legs of the 2-leg spin ladder.Comment: 8 pages, 10 figure

    High field level crossing studies on spin dimers in the low dimensional quantum spin system Na2_2T2_2(C2_2O4_4)3_3(H2_2O)2_2 with T=Ni,Co,Fe,Mn

    Full text link
    In this paper we demonstrate the application of high magnetic fields to study the magnetic properties of low dimensional spin systems. We present a case study on the series of 2-leg spin-ladder compounds Na2_2T2_2(C2_2O4_4)3_3(H2_2O)2_2 with T = Ni, Co, Fe and Mn. In all compounds the transition metal is in the T2+T^{2+} high spin configuation. The localized spin varies from S=1 to 3/2, 2 and 5/2 within this series. The magnetic properties were examined experimentally by magnetic susceptibility, pulsed high field magnetization and specific heat measurements. The data are analysed using a spin hamiltonian description. Although the transition metal ions form structurally a 2-leg ladder, an isolated dimer model consistently describes the observations very well. This behaviour can be understood in terms of the different coordination and superexchange angles of the oxalate ligands along the rungs and legs of the 2-leg spin ladder. All compounds exhibit magnetic field driven ground state changes which at very low temperatures lead to a multistep behaviour in the magnetization curves. In the Co and Fe compounds a strong axial anisotropy induced by the orbital magnetism leads to a nearly degenerate ground state and a strongly reduced critical field. We find a monotonous decrease of the intradimer magnetic exchange if the spin quantum number is increased

    Genetics and beyond - the transcriptome of human monocytes and disease susceptibility

    Get PDF
    BACKGROUND: Variability of gene expression in human may link gene sequence variability and phenotypes; however, non-genetic variations, alone or in combination with genetics, may also influence expression traits and have a critical role in physiological and disease processes. METHODOLOGY/PRINCIPAL FINDINGS: To get better insight into the overall variability of gene expression, we assessed the transcriptome of circulating monocytes, a key cell involved in immunity-related diseases and atherosclerosis, in 1,490 unrelated individuals and investigated its association with >675,000 SNPs and 10 common cardiovascular risk factors. Out of 12,808 expressed genes, 2,745 expression quantitative trait loci were detected (P<5.78x10(-12)), most of them (90%) being cis-modulated. Extensive analyses showed that associations identified by genome-wide association studies of lipids, body mass index or blood pressure were rarely compatible with a mediation by monocyte expression level at the locus. At a study-wide level (P<3.9x10(-7)), 1,662 expression traits (13.0%) were significantly associated with at least one risk factor. Genome-wide interaction analyses suggested that genetic variability and risk factors mostly acted additively on gene expression. Because of the structure of correlation among expression traits, the variability of risk factors could be characterized by a limited set of independent gene expressions which may have biological and clinical relevance. For example expression traits associated with cigarette smoking were more strongly associated with carotid atherosclerosis than smoking itself. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that the monocyte transcriptome is a potent integrator of genetic and non-genetic influences of relevance for disease pathophysiology and risk assessment

    Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts

    Get PDF
    INTRODUCTION: Accumulating evidence suggests that fibroblasts play a pivotal role in promoting the growth of breast cancer cells. The objective of the present study was to characterize and validate an in vitro model of the interaction between small numbers of human breast cancer cells and human fibroblasts. METHODS: We measured the clonogenic growth of small numbers of human breast cancer cells co-cultured in direct contact with serum-activated, normal human fibroblasts. Using DNA microarrays, we also characterized the gene expression profile of the serum-activated fibroblasts. In order to validate the in vivo relevance of our experiments, we then analyzed clinical samples of metastatic breast cancer for the presence of myofibroblasts expressing α-smooth muscle actin. RESULTS: Clonogenic growth of human breast cancer cells obtained directly from in situ and invasive tumors was dramatically and consistently enhanced when the tumor cells were co-cultured in direct contact with serum-activated fibroblasts. This effect was abolished when the cells were co-cultured in transwells separated by permeable inserts. The fibroblasts in our experimental model exhibited a gene expression signature characteristic of 'serum response' (i.e. myofibroblasts). Immunostaining of human samples of metastatic breast cancer tissue confirmed that myofibroblasts are in direct contact with breast cancer cells. CONCLUSION: Serum-activated fibroblasts promote the clonogenic growth of human breast cancer cells in vitro through a mechanism that involves direct physical contact between the cells. This model shares many important molecular and phenotypic similarities with the fibroblasts that are naturally found in breast cancers

    Next-generation insights into regulatory T cells: expression profiling and FoxP3 occupancy in Human

    Get PDF
    Regulatory T-cells (Treg) play an essential role in the negative regulation of immune answers by developing an attenuated cytokine response that allows suppressing proliferation and effector function of T-cells (CD4+ Th). The transcription factor FoxP3 is responsible for the regulation of many genes involved in the Treg gene signature. Its ablation leads to severe immune deficiencies in human and mice. Recent developments in sequencing technologies have revolutionized the possibilities to gain insights into transcription factor binding by ChiP-seq and into transcriptome analysis by mRNA-seq. We combine FoxP3 ChiP-seq and mRNA-seq in order to understand the transcriptional differences between primary human CD4+ T helper and regulatory T-cells, as well as to study the role of FoxP3 in generating those differences. We show, that mRNA-seq allows analyzing the transcriptomal landscape of T-cells including the expression of specific splice variants at much greater depth than previous approaches, whereas 50% of transcriptional regulation events have not been described before by using diverse array technologies. We discovered splicing patterns like the expression of a kinase-dead isoform of IRAK1 upon T-cell activation. The immunoproteasome is up-regulated in both Treg and CD4+ Th cells upon activation, whereas the ‘standard’ proteasome is up-regulated in Tregs only upon activation

    Next-generation insights into regulatory T cells: expression profiling and FoxP3 occupancy in Human

    Get PDF
    Regulatory T-cells (Treg) play an essential role in the negative regulation of immune answers by developing an attenuated cytokine response that allows suppressing proliferation and effector function of T-cells (CD4+ Th). The transcription factor FoxP3 is responsible for the regulation of many genes involved in the Treg gene signature. Its ablation leads to severe immune deficiencies in human and mice. Recent developments in sequencing technologies have revolutionized the possibilities to gain insights into transcription factor binding by ChiP-seq and into transcriptome analysis by mRNA-seq. We combine FoxP3 ChiP-seq and mRNA-seq in order to understand the transcriptional differences between primary human CD4+ T helper and regulatory T-cells, as well as to study the role of FoxP3 in generating those differences. We show, that mRNA-seq allows analyzing the transcriptomal landscape of T-cells including the expression of specific splice variants at much greater depth than previous approaches, whereas 50% of transcriptional regulation events have not been described before by using diverse array technologies. We discovered splicing patterns like the expression of a kinase-dead isoform of IRAK1 upon T-cell activation. The immunoproteasome is up-regulated in both Treg and CD4+ Th cells upon activation, whereas the ‘standard’ proteasome is up-regulated in Tregs only upon activation

    Typing Late Prehistoric Cows and Bulls—Osteology and Genetics of Cattle at the Eketorp Ringfort on the Öland Island in Sweden

    Get PDF
    Human management of livestock and the presence of different breeds have been discussed in archaeozoology and animal breeding. Traditionally osteometrics has been the main tool in addressing these questions. We combine osteometrics with molecular sex identifications of 104 of 340 morphometrically analysed bones in order to investigate the use of cattle at the Eketorp ringfort on the Öland island in Sweden. The fort is dated to 300–1220/50 A.D., revealing three different building phases. In order to investigate specific patterns and shifts through time in the use of cattle the genetic data is evaluated in relation to osteometric patterns and occurrence of pathologies on cattle metapodia. Males were genotyped for a Y-chromosomal SNP in UTY19 that separates the two major haplogroups, Y1 and Y2, in taurine cattle. A subset of the samples were also genotyped for one SNP involved in coat coloration (MC1R), one SNP putatively involved in resistance to cattle plague (TLR4), and one SNP in intron 5 of the IGF-1 gene that has been associated to size and reproduction

    Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway

    Get PDF
    BACKGROUND: Stromelysin-3 (ST-3) is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. METHODS: The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. RESULTS: Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. CONCLUSION: These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated "early stage" breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour fibroblasts leads to the stimulation of the IGF-1R pathway in carcinoma cells, thus enhancing their proliferative capacity. In addition, further different cellular processes seem to be activated by ST-3, possibly accounting for the dual role of ST-3 in tumour progression and metastasis
    corecore