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Abstract

Background: Variability of gene expression in human may link gene sequence variability and phenotypes; however, non-
genetic variations, alone or in combination with genetics, may also influence expression traits and have a critical role in
physiological and disease processes.

Methodology/Principal Findings: To get better insight into the overall variability of gene expression, we assessed the
transcriptome of circulating monocytes, a key cell involved in immunity-related diseases and atherosclerosis, in 1,490
unrelated individuals and investigated its association with .675,000 SNPs and 10 common cardiovascular risk factors. Out
of 12,808 expressed genes, 2,745 expression quantitative trait loci were detected (P,5.78610212), most of them (90%)
being cis-modulated. Extensive analyses showed that associations identified by genome-wide association studies of lipids,
body mass index or blood pressure were rarely compatible with a mediation by monocyte expression level at the locus. At a
study-wide level (P,3.961027), 1,662 expression traits (13.0%) were significantly associated with at least one risk factor.
Genome-wide interaction analyses suggested that genetic variability and risk factors mostly acted additively on gene
expression. Because of the structure of correlation among expression traits, the variability of risk factors could be
characterized by a limited set of independent gene expressions which may have biological and clinical relevance. For
example expression traits associated with cigarette smoking were more strongly associated with carotid atherosclerosis
than smoking itself.

Conclusions/Significance: This study demonstrates that the monocyte transcriptome is a potent integrator of genetic and
non-genetic influences of relevance for disease pathophysiology and risk assessment.
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Introduction

The transcriptome, i.e. the whole set of RNA transcripts in a

cell, is generally conceived as a system whose major function is to

pass information encoded in the genome sequence to the realm of

phenotypes that underlie physiological and pathological traits.

This messenger paradigm justifies the current interest for the

genetics of gene expression [1–6] which has been further enhanced

by the numerous associations between genetic markers and

diseases reported in recent genome-wide association studies

(GWAS) and the expected relevance of genome wide expression

(GWE) to characterize the biological basis of these associations

[7–10]. However the variability of gene expression not only

reflects genetic variation but depends on other factors as well such
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as environmental exposures [11,12], metabolic conditions [13],

ageing [14,15] or gender [16–17].

Based on these premises we reasoned that if the state of the

transcriptome and its changes are important determinants of cell

functions, differences in transcript abundance whatever their

origin, genetic or non genetic, may contribute to disease

pathogenesis. Moreover, the transcriptome might integrate

information from numerous sources and inform on the current

pathophysiological state of the organism. To assess these

possibilities, a global characterization of the variability of the

transcriptome, integrating genetic and non genetic influences was

undertaken. The study focused on peripheral blood monocytes

because these cells may be isolated from an easily accessible tissue

and play a key role in the pathogenesis of immune disorders and

atherosclerosis-related diseases [18]. In addition, working on a

single cell type reduces the complexity of transcriptome data and

may avoid possible biases resulting from the heterogeneous cell-

types distribution in different samples as it is the case when using

whole blood or leucocytes RNAs.

Results

The genome-wide expression of circulating monocytes
To reduce potential artefacts, fresh samples were collected and

processed in a short period of time according to a very strict

protocol. Monocytes were obtained from 1,490 unrelated

individuals, 730 women and 760 men, aged 35 to 74 years,

recruited in the Gutenberg Heart Study (GHS), a community-

based project conducted in a single centre in the region of Mainz

(Germany) (Table 1). GWE profiles were generated using Illumina

Human HT-12 expression BeadChips, and after normalization

and filtering out genes undetected in monocytes or non-well

characterized (see Materials and Methods), 12,808 expressions

traits (averaged over probes) remained for analysis.

Identification of eSNPs and eQTLs
Genotyping was performed using Affymetrix 6.0 arrays. After

filtering out SNPs poorly performing or having a minor allele

frequency ,0.01, 675,350 SNPs were kept for further analyses. All

associations between SNPs and expression traits with a P-value

,1025 (n.225,000) were stored in the ‘‘GHS_Express’’ database

(‘‘GHS_Express’’ is available online, see Methods S1). At a study-

wise threshold of significance correcting for the number of SNPs

and expressions (P,5.78610212), 37,403 associations, involving

29,912 SNPs and 2,745 expression traits (referred to as eSNPs and

eQTLs, respectively), were identified (Table 2). The median

number of eSNPs by eQTL was 11 with an interquartile range of 4

to 26. Owing to its large sample size, the study had an 80% power

to detect a SNP effect accounting for 4% or more of the variability

(R2) of any expression trait. Among the 2,745 significant eQTLs,

the R2 observed for the best eSNP varied from 3.1% to .80%

with a median of 7.7%. For 290 eQTLs, the R2 was greater than

25%.

Cis versus trans associations
Associations involving SNPs located within 1 Mb of either the

59 or 39 end of the associated gene were considered cis (File S1) and

other associations were considered trans. In accordance with

previous results [2–6], most of the genetic variability affecting the

transcriptome was of cis origin. At study-wise significance, the

number of cis and trans eQTLs were 2,477 and 349, respectively,

yielding a cis/trans ratio of 7.1 (81 eQTLs were both cis- and trans-

modulated). At less stringent levels of significance the number of

trans associations considerably increased, as expected by chance,

whereas the number of cis eQTLs only modestly increased,

indicating that the high stringency used for cis eQTLs identifica-

tion did not result in an important under-estimation of the true

number of cis eQTLs (Figure 1).

Comparison with previous GWAS of gene expression
We examined the overlap between the cis eQTLs identified in

the present study and those found in three previous association

studies in which gene expression was explored in LCLs [1,2] and

hepatic cells [3]. For this comparison, a significance threshold of

3.961026 (Bonferroni-corrected for 12,808 genes) was used for

the analysis of eQTLs in GHS data, corresponding to a single

hypothesis tested per gene. Among the cis eQTLs considered

significant in each of the studies and involving expression traits

detected in GHS, 66.7%, 56.5% and 54.1%, respectively, were

significant in our data (Table 3, Files S2–S4). The proportion of

cis eQTLs that replicated in GHS increased with the increasing

level of significance reported in each study, consistent with the

fact that stronger associations are more robust and more likely to

be shared by different types of cells. These comparisons revealed

a relatively high rate of replication of the previous findings in

GHS. However, as a consequence of its greater power, P-values

observed in GHS were considerably lower than those previously

reported (Figure 2).

We also examined the overlap between cis eQTLs in GHS and

cis-heritable eQTLs found by expression profiling of lymphocyte

RNA in the San Antonio Family Heart Study (SAFHS) 4. Among

the eQTLs with a cis heritability $0.1 in SAFHS, 62% were

significantly cis modulated in GHS, and this proportion reached

89% for heritabilities $0.6 (Figure 3, File S5).

Trans associations showed much weaker consistency across

studies. Among the 50 eQTLs having a trans lod score .4.0 in

SAFHS [4] with corresponding expression detected in GHS, only

one, MAPK8IP1, was replicated in GHS (P,102300). Replication

of the trans associations in studies of similar power as the present

one would be of interest.

Identifying eQTLs that may result from the presence of
SNPs in probe sequences

For all probes present on the Illumina HT12 array, a systematic

search for sequence polymorphisms was undertaken, using the

HapMap database as reference (Release 27; Phase II+III, Feb09,

Table 1. Description of the GHS study population.

Men Women P-value

N 760 730

Age (years) 56.4 (10.6) 53.9 (11.2) 2.461025

BMI (kg/m2) 27.6 (3.9) 26.2 (5.1) 1.261028

HDL cholesterol (mg/dL) 54.4 (14.9) 69.2 (17.8) 2.2610216

LDL cholesterol (mg/dL) 133.7 (36.1) 133.0 (36.8) NS

Triglycerides (mg/dl) 143.2 (97.5) 114.4 (56.8) 2.1610212

Systolic blood pressure (mmHg) 135.8 (16.7) 128.5 (18.2) 2.3610216

Diastolic blood pressure (mmHg) 85.2 (9.6) 81.2 (9.5) 5.4610216

Current smoker 128 (16.8%) 113 (15.5%) NS

Plasma CRP (mg/L) (sqrt) 1.509 (0.818) 1.545 (0.743) NS

Plasma glucose (mg/dL) 97.8 (18.5) 91.8 (15.4) 1.161024

Values are means (SD) or numbers (%).
doi:10.1371/journal.pone.0010693.t001
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on NCBI B36 assembly and dbSNP b126). Among the 2,477 genes

whose expression was associated with cis eSNPs, 173 (7%) were

probed by one or several polymorphic sequences (180 probes)

(Table S1). For 32 of these probes, the HapMap SNP was present

on the Affymetrix array used in this study and for 41 other probes,

the HapMap SNP had one or several perfect proxies on the array.

For those eQTLs, we cannot exclude the possibility of an

artefactual association due to a differential binding of the probe

to its target sequence.

Gene expression, a link between DNA sequence
variability and clinical phenotypes?

A link between genetic variability and clinical phenotypes is

supported in human studies by several observations relating variants

Table 2. Number of gene expression-by-SNP associations at various levels of significance.

Significance
level Minimum R2 $

Total number
of associations

cis/trans ratio for
associations

Total number of
associated
expressions
(eQTLs)

cis/trans ratio
for eQTLs

Total number of
associated SNPs
(eSNPs)

cis/trans ratio
for eSNPs

,1026 0.016 93491 2.1 8575 0.5 67190 2.4

,1028 0.022 54749 7.3 3857 3.0 41425 11.2

,10210 0.028 42421 9.8 2998 6.0 33339 16.3

,5.78610212 0.031 37403 10.7 2745 7.1 29912 17.1

,10215 0.042 27330 12.7 2180 9.5 22591 17.8

,10220 0.057 19655 14.7 1725 12.8 16883 19.2

,10225 0.071 15015 16.4 1429 16.2 13045 21.5

,10235 0.099 9673 17.1 1031 21.6 8516 22.9

,10250 0.140 5873 14.0 712 28.8 5224 21.7

,102100 0.263 1790 10.5 290 28.1 1598 11.1

,102150 0.371 922 5.5 156 21.4 772 5.9

,102200 0.463 635 3.7 97 15.3 504 3.9

,102300 0.606 321 1.7 38 11.7 213 1.7

$Minimum R2 (proportion of gene expression variability explained by a SNP) observed for a given significance level. Numbers corresponding to study-wise significance are
shown in bold. For investigating cis associations or performing any other hypothesis-based test, lower levels of significance may be considered.

doi:10.1371/journal.pone.0010693.t002

Figure 1. Number of eQTLs according to the significance threshold adopted and corresponding cis/trans eQTL ratio. The vertical arrow
indicates the study-wise level of significance correcting for the number of hypotheses tested. Some eQTLs being associated with both cis and trans-
acting eSNPs, the sum of cis and trans eQTLs is greater than the total number of eQTLs.
doi:10.1371/journal.pone.0010693.g001
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Figure 2. Comparison of the distributions of P-values of cis eQTLs reported as significant in three previous association studies with
P-values observed in GHS for the same eQTLs. For each of the 3 comparisons, we selected in GHS the subset of gene expressions claimed as
significant in the study of comparison. Only autosomal genes were considered in these comparisons. The data used to generate this figure are
provided in Files S2–S4. See also footnote of Table S3 for details.
doi:10.1371/journal.pone.0010693.g002

Table 3. Number of cis eQTLs identified in previous studies and replicated in GHS.

Stranger et al. Dixon et al. Schadt et al.

Level of
signifi-cance

Number of eQTLs at
level of significance

Percent signifi-
cant in GHS*

Number of eQTLs at
level of significance

Percent signif-
icant in GHS*

Number of eQTLs at
level of significance

Percent signifi-
cant in GHS*

.1028 86 55.8 110 50.9 928 47.9

1028–10210 63 69.8 162 50.0 168 57.7

10210–10215 144 63.2 237 54.8 211 57.3

10215–10220 60 70.0 102 60.7 120 66.7

10220–10225 38 89.5 73 65.7 73 67.1

#10225 48 70.8 89 67.4 103 73.8

All 439 66.7 773 56.5 1603 54.1

* Comparisons were based on sets of gene expressions overlapping between each study and GHS and were restricted to autosomal cis eQTLs. All cis eQTLs considered
significant in each study were retrieved and replication was assessed in GHS (P,3.961026 correcting for 12,808 gene expressions).
For Stranger et al [1], data were extracted from Table S2. We considered as significant the associations found in at least 3 HAPMAP populations. For Dixon et al [2], data were
extracted from Table S1 and trans eQTLs were excluded. Matching of probes was done using a table provided by the authors on their web site. For Schadt et al [3], cis eQTLs
considered significant (First.Pass.Indicator set to 1) were extracted from Table S3. For each eQTL, we selected in GHS the P-value of the best cis eSNP. The full data used to
generate this table are provided in Files S2–S4.
doi:10.1371/journal.pone.0010693.t003
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in regulatory gene regions to protein phenotypes or diseases [19,20].

However, this message-passing paradigm has never been evaluated

on a genome-wide basis. We therefore tested whether monocytes

gene expression might mediate the effects of loci recently identified by

GWAS of cardiovascular risk factors. For each locus identified in

GWAS of lipid variables [21], blood pressure (BP) [22] and body

mass index (BMI) [23], we selected the lead SNP or a tag SNP having

an r2$0.8 with the lead SNP in GHS data. Associations between

lead/tag SNPs and corresponding risk factors were checked in all

GHS subjects for whom genome-wide data was available (n = 3,175).

Most previous GWAS loci for circulating lipids were replicated in our

data (Table 4) but only few of the findings of GWAS of BMI and BP

were replicated (Table S2). This low replication is probably due to a

lack of power, as the maximum R2 observed in the GWAS of BP [22]

was 0.09% and the power of GHS to replicate such an association

was only 38%.

For each GWAS locus, we examined whether the lead/tag SNP

correlated with any expression trait in GHS data and when a

significant association was found, we checked whether the

expression trait was significantly associated with the risk factor

under consideration. This analysis revealed that very few GWAS

results were compatible with an effect mediated by gene expression

at the locus (Table 4 and Table S2). There were, however, two

exceptions: the first one concerned the LPL locus, where the minor

allele of rs17489282 was associated with higher HDL-cholesterol

(P = 5.9161025) and LPL expression (P = 2.1861026), while HDL-

cholesterol and LPL expression were positively correlated

(P = 661024), consistent with an effect mediated by LPL; the

second one concerned the association between the 1p13.3 locus

and LDL-cholesterol. This locus encompasses three potential

candidate genes, CELSR2, PSRC1 and SORT1, and it has been

suggested that CELSR2 or SORT1 could be responsible for the

reported associations of this locus with LDL [3,24,25]. In our data,

the minor allele of rs629301 (a perfect tag of the lead SNP

identified by GWAS), was associated with lower LDL-cholesterol

(P = 2.661024) and higher PRSC1 expression (P = 2.3610256)

Figure 3. Comparison of the heritability of cis eQTLs estimated in the SAFHS study with the R2 of the corresponding cis eQTLs in
GHS. Data were extracted from Supplementary Table 4 in Göring et al. [4] and comparisons were restricted to genes having a corresponding gene
symbol in GHS. Heritability in the SAFHS was estimated by linkage analysis and accounts for the whole variability at a locus while R2 refers to a single
eSNP (the best eSNP) and therefore underestimates the global variability affecting gene expression at a locus. The data used to generate this figure
are provided in File S5. The median R2 was globally lower than the heritability, consistent with the fact that the R2 is referring to a single SNP whereas
heritability reflects the whole genetic variation at a locus.
doi:10.1371/journal.pone.0010693.g003
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while PRSC1 expression and LDL-cholesterol were negatively

correlated (P = 0.019). Results for CELSR2 were much less

consistent and SORT1, the third gene at the locus, was not cis-

modulated in monocytes.

Several loci associated with coronary artery disease (CAD) have

been identified by GWAS [26–29]. The strongest association

involves SNPs in the 9p21 region. Recently it was reported that

deletion in mice of the region orthologous to the 9p21 CAD

interval in human affects the expression of the nearby cdkn2a and

cdkn2b genes as well as the properties of proliferation of vascular

cells [30]. The Cyclin-dependent kinase inhibitor coding genes,

CDNK2A and CDNK2B, are also located close to the CAD locus in

humans. CDKN2A expression in monocytes was not detected in

our study, we therefore focused our analysis on CDKN2B. All SNPs

available in GHS in the region encompassing the CAD locus were

tested for association with the expression of CDKN2B. Figure 4

shows that CDKN2B expression was strongly associated with

several SNPs located in a region upstream of the gene sequence

(P,10260). However, these SNPs were not associated with CAD

(this result was obtained in a yet unpublished GWAS comparing

GHS individuals to a cohort of CAD patients), whereas proxies of

the CAD-associated SNPs were unrelated with CDKN2B expres-

sion (see legend of Figure 4 for more details). The SNPs associated

with CDKN2B expression are located within the sequence of the

non-coding alternatively spliced gene ANRIL (also named

CDKN2BAS) whose implication in the association with CAD has

been hypothesized [31]. Although our results are limited by the

fact that neither CDKN2A nor ANRIL expressions could be

Table 4. Loci identified in GWAS of circulating lipids – associations of lead/tag SNPs with phenotypes and expression, and of
expression with phenotype in GHS.

Lead SNP
in GWAS Phenotype Chr

Position
(Mb) Genes in region

Tag SNP in
Affy 6.0 with
r2.0.8

r2 between
lead SNP
and tag SNP

Association
between tag
SNP and
phenotype
(P-value)

eQTL
associated
with tag
SNP

Association
between tag
SNP and eQTL
(P-value)

Association
between
eQTL and
phenotype
(P-value)

rs10889353 TG 1 62.83 DOCK7 rs10889353 1.00 1.86E-04 DOCK7 7.09E-52 0.3970

rs646776* LDL 1 109.53 CELSR2/PSRC1/
SORT1

rs629301 1.00 2.62E-04 PSRC1 2.34E-56 0.0190

CELSR2 7.56E-06 0.6195

rs693 LDL 2 21.14 APOB rs693 1.00 1.61E-04 none

rs6754295 HDL 2 21.12 APOB rs673548 0.86 0.0435 none

rs673548 TG 2 21.15 APOB rs673548 1.00 4.10E-05 none

rs780094 TG 2 27.65 GCKR rs780094 1.00 3.15E-08 none

rs6756629 LDL 2 43.98 ABCG5 rs4953023 1.00 7.87E-05 none

rs3846662 LDL 5 74.69 HMGCR rs12654264 0.84 9.26E-06 none

rs12670798 LDL 7 21.38 DNAH11 none

rs2240466 TG 7 72.3 MLXIPL rs2074755 1.00 0.0015 none

rs2083637 HDL 8 19.91 LPL rs17489282 1.00 5.91E-05 LPL 2.18E-06 0.0006

rs2083637 TG 8 19.91 LPL rs17489282 1.00 3.31E-07 LPL 2.18E-06 0.3520

rs3905000 HDL 9 104.74 ABCA1 rs3890182 1.00 0.33 none

rs7395662 HDL 11 48.48 MADD-FOLH1 rs7395662 1.00 0.17 MYBPC3 1.17E-09 0.1435

SPI1 4.42E-06 0.0222

rs174570 LDL 11 61.35 FADS2/3 rs174570 1.00 0.0386 none

rs12272004 TG 11 116.11 APO(A1/A4/A5/C3) rs10488699 1.00 1.63E-06 none

rs1532085 HDL 15 56.47 LIPC none

rs1532624 HDL 16 55.56 CETP none

rs2271293 HDL 16 66.46 CTCF-PRMT8 rs2271293 1.00 0.0145 DPEP3 5.09E-17 0.8275

DUS2L 5.15E-42 0.1410

GFOD2 1.48E-17 0.6400

LCAT 6.00E-06 0.3347

PARD6A 7.88E-07 0.8772

PRMT7 2.03E-06 0.1690

rs4939883 HDL 18 45.42 LIPG rs7240405 1.00 0.0233 none

rs2228671 LDL 19 11.07 LDLR none

rs157580 LDL 19 50.09 TOMM40-APOE none

GWAS loci were taken from Table 2 in ref. 21.
*This SNP was also found in GWAS of CAD. The association between tag SNP and phenotype was tested in the 3,175 GHS subjects having GWV data. Association between
eQTL and tag SNP or phenotype was tested in the 1,490 GHS subjects having GWE data. In bold are shown the loci for which the SNP-phenotype association found in GWAS is
compatible with mediation by gene expression. Similar analyses for BMI and BP are given in Table S2.
doi:10.1371/journal.pone.0010693.t004
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evaluated, they reveal that in humans, SNPs that affect CDKN2B

expression are different from those that are known to affect CAD

risk (Figure 4).

Expression traits associated with risk factors
To investigate gene expression in relation to risk factors (age,

gender, BMI, HDL and LDL cholesterol, triglycerides, Systolic

and Diastolic Blood pressure, smoking and plasma CRP), the

study-wise significance threshold was set at 3.961027 to correct

for the number of risk factors (n = 10) and expressions (n = 12,808)

tested. Overall, 1,662 expression traits (13.0%) were associated

with at least one risk factor (Table 5 and File S6). Gender and age

were the two major factors influencing expression levels (807 gene

expressions were affected by gender and 396 by age). BMI,

smoking and C-reactive protein (CRP) levels were also correlated

with numerous expression traits (230, 294 and 328, respectively).

Conversely, few associations with BP and lipids were observed

(Table 5).

Genetic and non-genetic factors act additively on gene
expression

Cis eQTLs were over-represented among expression traits that

were also affected by gender, age, BMI, smoking and CRP, with

odds ratios as high as 3.24 for cigarette smoking (Table 5). This

suggests that some genes are more responsive than others to the

influence of multiple factors. For expression traits that were

simultaneously associated with cis eSNPs and risk factors (n = 465),

we determined the joint effects of the two sources of variability on

expression level. For this purpose, each eQTL was modelled as a

function of the best cis-acting eSNP, the associated risk factor and

Figure 4. The loci affecting CDKN2B expression and CAD on chromosome 9p21 are independent. The lead SNP rs1333049 generally
reported at the CAD locus was not present on the Affymetrix 6.0 array, we therefore selected its best proxy, rs10757272 (position 22078260, r2 = 0.9
with rs1333049), using SNAP (https://www.broadinstitute.org/mpg/snap). Positions of genotyped SNPs are shown using a green link and position of
the proxy SNP, rs10757272, is represented by a green triangle. The red curve reflect the –log10(P-value) for the association between SNPs and
CDKN2B expression. The LD (r2) between pairs of SNPs is shown at the bottom of the figure using a range of colors between white (r2 = 0) and black
(r2 = 1). The CDKN2B and CAD-associated SNPs are located in different blocks of LD strongly suggesting that the genetic effects on CDKN2B expression
and CAD are independent.
doi:10.1371/journal.pone.0010693.g004
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the interaction between the two. When several risk factors were

associated with the same eQTL, each of them was tested

separately for interaction with the corresponding SNP. The best

FDR-corrected P-values for interaction (File S7) were 0.014 (ISCU

expression, gender and rs4830487) and the second one was 0.042

(HIST1H2AE expression, smoking and rs16891378). This first

genome-wide exploration of interaction between cis eSNPs and

risk factors on gene expression therefore suggests that the two

sources of variability mostly act additively on expression. This is

illustrated for eQTLs affected by smoking in Figure 5. It must be

noted however that despite the large size of this study, its power

may nevertheless be insufficient to assess weak interaction.

Expressions influenced by genetic and risk factors are
enriched in immunity and defense genes

An ontology analysis using the Panther system demonstrated

that, by reference to the list of 12,808 genes expressed in

monocytes, the set of 465 expression traits affected by multiple

sources of variability was enriched in ‘‘Immunity and defense’’

genes (69 observed/35.8 expected, P = 4.561026), especially in the

sub-categories of ‘‘Macrophage-mediated immunity’’ (18/3.6,

P = 7.561026).

The variability of each risk factor can be characterized by
a limited set of independent gene expressions

The preceding analyses revealed that each risk factor was

associated with a large number of expression traits, thus

emphasizing the multiple inter-relations existing between the

transcriptomic and risk factor profiles of an individual. While it is

important from a biological and mechanistic perspective to

characterize at best all the genes that are influenced by a given

condition, from a clinical perspective, it might be more relevant to

identify a limited set of gene expressions that could efficiently

discriminate individuals with different risk profiles. Indeed,

because of the tight co-regulation of genes within biological

systems, numerous gene expressions are inter-correlated and

consequently, their association with risk factors are not indepen-

dent. To account for this inter-dependency, we conducted a

multivariate analysis to identify expression traits that were

independently associated with each risk factor.

To obtain reliable results, we randomly divided the study

population into two sub-samples of equal size which were used for

screening and validation purposes respectively (see Materials and

Methods). In these analyses, each risk factor was considered

separately whereas all expression traits were envisaged jointly for

their potential association with the risk factor, considered here as

the dependent variable. The screening/validation procedure was

repeated 250 times and for each risk factor, we report expression

traits associated (P,0.01) with the risk factor in more than 25% of

the replicates. This stringent approach led to the identification of

106 independent expression correlates for the ten risk factors

(Table 6), a much reduced number compared to the 1,662

expression traits previously identified by the one-to-one association

analysis presented in Table 5.

Gender and age. Even after exclusion of sex-linked genes,

gender was independently associated with the largest number of

expression traits (n = 31) which, considered all together,

contributed to a highly significant discrimination between males

and females (P,102100). By contrast the number of expression

traits independently associated with age was more limited (n = 12).

BMI and CRP. Both factors were independently associated

with 12 and 14 expression traits respectively. Inspection of the

genes listed in Table 6 shows that several of them, including

CX3CR1, CD209, CLEC10A, FCER1A, FCGBP, C1RL, C1QB,

CD36, ADM and VSIG4, encode proteins involved in the

differentiation or maturation of immunity-related cells and in

host defence [32–38]. We may speculate that the variability of

expression of these genes is the consequence of an already present

heterogeneity of monocytes [39,40] or reflects a particular

transcription pattern that prefigures future functional changes.

The example of CX3CR1 which was positively associated with both

BMI and CRP is particularly interesting as this gene encodes the

fractalkine receptor whose role is essential in the migration of

Table 5. Number of expression traits associated with risk factors and cis eSNPs.

Risk factor

Number of expression
traits associated with the
specified risk factor

Number (%) of expression
traits also associated with
cis eSNPs Odds ratio (95% CI)*

Gender 807 230 (28.5%) 1.73 (1.47–2.03)

Age 396 94 (23.7%) 1.31 (1.03–1.66)

BMI 230 72 (31.3%) 1.92 (1.45–2.56)

HDL 9 1 (11.1%) ND

LDL 1 0 ND

Triglycerides 9 3 (33.3%) ND

SBP 48 6 (12.5%) 0.59 (0.25–1.40)

DBP 18 2 (11.1%) ND

Smoking 294 126 (42.9%) 3.24 (2.56–4.10)

CRP 328 116 (35.4%) 2.34 (1.86–2.95)

All (irrespective of any
association with risk factor)

12,808 2,477 (19.3%)

Study-wise levels of significance were considered for associations of expression traits with risk factors and SNPs (3.961027 and 5.78610212, respectively). Associations of
expression traits with BMI, CRP and smoking were adjusted for age and sex, and association with HDL, LDL, triglycerides, SBP and DBP were additionally adjusted for
BMI.
*Odds ratio (OR) of being influenced by a cis eSNP for an expression trait associated with a given risk factor. For example, gender-related expression traits have an OR of
1.73 of being influenced by cis eSNPs by comparison to expression traits unrelated to gender. ND: not determined because of small numbers.
doi:10.1371/journal.pone.0010693.t005
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monocytes to sites of inflammation and injury, especially in

atherosclerotic lesions [41].
Lipids. ABCA1 and ABCG1 gene expressions were both

associated with circulating lipids. The proteins encoded by these

genes are key players in reverse cholesterol transport and the

regulation of lipid-trafficking mechanisms in macrophages

respectively [42,43]. MYLIP (Idol) is a ligase involved in the

ubiquitination and degradation of LDL receptors [44,45] and

SCD is a stearoyl-CoA desaturase involved in the conversion of

saturated into monounsaturated fatty acids that regulates lipid

metabolism and may be modulated by dietary intake [46].
Blood pressure. One of the main independent correlates of

SBP was ARID5B (MRF2), whose relevance in the physiology of BP

regulation is supported by its role as a regulator of smooth muscle

differentiation and proliferation [47]. GFOD1, another expression

correlate of SBP and DBP is a gene of unknown function which

has been associated with attention deficit hyperactivity disorder

[48].

Cigarette smoking has a major impact on gene
expression and atherosclerosis

Smoking was independently associated with 18 expression traits

(Table 6) which, considered all together, contributed to a highly

significant discrimination between smokers and non smokers

(P,102107, R2.50%). Nine of these genes were modulated by cis

eSNPs (Table 7) and as already mentioned above, the genetic and

smoking effects on these gene expressions were additive (Figure 5).

Among the 18 expression traits associated with smoking,

SASH1, P2RY6 and PTGDS were systematically retrieved in all

Figure 5. Effect of the best cis eSNP and smoking on expression of smoking-related eQTLs. The proportion of variability of expression
explained by the best cis eSNP varied from 3.1% for CLEC10A to 27.2% for GFRA2 while the proportion explained by smoking varied from 2.8% for
SMAD6 to 21.6% for SASH1. The lowest P-value for interaction between SNP and smoking was 0.02 for STAB1.
doi:10.1371/journal.pone.0010693.g005
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screening/validation replicates (Table S3). SASH1 is a tumor

suppressor gene [49], P2RY6 encodes a G-protein-coupled

receptor involved in the proinflammatory response to UDP in

monocytes [50] and PTGDS encodes a prostaglandin D synthase

involved in smooth muscle contraction/relaxation and inhibition

of platelet aggregation, two functions known to be modified by

tobacco consumption. Recently, in a GWE study of leukocytes

RNA, PTGDS and SASH1 expressions were found associated with

cotinine, a metabolite of nicotine used as a marker of tobacco

exposure [51].

Cigarette smoking is a major risk factor for atherosclerosis [52].

In GHS participants, the prevalence of atherosclerotic plaques in

the right and left carotid arteries, assessed by echography, was

strongly increased in smokers (P = 9.161027 after adjustment for

age and gender). Among the 18 gene expressions independently

associated with smoking, four were individually correlated with the

number of carotid plaques, PTGDS (P = 1.861027) negatively and

MMP25 (P = 3.561024), SASH1 (P = 1.461025) and WWC3

(P = 6.361024) positively (Table 7). In a multivariate model

including the four expression traits and smoking, as well as age and

gender, PTGDS (P = 5.761024) and SASH1 (P = 0.012) remained

significantly associated with the number of plaques whereas

MMP25 (P = 0.09), WWC3 (P = 0.10) and smoking (P = 0.5) were

no longer significant, suggesting that the association between

smoking and atherosclerosis was mostly reflected (or mediated) by

its effect on the expression of these four genes. The fact that

PTGDS and SASH1 expression remained associated with carotid

plaques after adjustment on smoking status may indicate a broader

implication of these genes in atherosclerosis than the sole effect

induced by smoking. However it is also possible that the expression

of these two genes more faithfully reflects tobacco consumption

than the dichotomous variable used to define smoking. This

illustrates the dual aspect of the transcriptome which may be

viewed either as an element in a causal chain or as reflecting

ongoing processes with no implied causation. Because genetics

may help to dissect causal pathways, we examined whether the

best cis eSNPs associated with expression of the smoking-related

genes were also associated with carotid atherosclerosis, but no such

association was detected (Table 7).

Discussion

This large-scale investigation of the transcriptome of monocytes

in healthy individuals provides new biological insights into the

mechanisms by which gene expression might contribute to disease

pathogenesis. In the line of previous studies [1–5], we could build a

detailed map of cis-regulated eQTLs in monocytes. Even if cell-

specific eQTLs exist [53], a large fraction of them are likely to be

common to other cell types, and the eQTL map provided here

constitutes the most extensive one so far.

Despite the large number of eQTLs identified, the transcrip-

tome of circulating monocytes, contrary to initial expectations

[7–10], appeared of modest help to dissect the relationship

between genome variability and complex human traits such as

cardiovascular risk factors. One explanation for this finding might

be that monocytes are not the most relevant cells for unravelling

links between genome variation and the risk factors investigated.

With regard to circulating lipids for example, only 28 of the 45

genes located in regions harbouring SNPs associated with

circulating lipids in GWAS [24] were expressed in monocytes.

The difficulty to corroborate the messenger paradigm in human

clinical studies may also relate to the fact that the linear model of

Table 6. Subsets of expression traits showing robust independent association with the different risk factors in the validation
sample.

Risk factor
Median (range) of the global
P-values across replicates*

List of gene expressions associated with risk
factor after adjustment on covariates$

Gender# All P,102100 CCDC106, MMEL1, ANKRD57, CXCR7, FCGR2B, SOX15, FCGBP, LPXN, CD24, HOXA9, PTK6,
DDX43, RAB11FIP1, PTK2, CLEC4G, ADARB1, PROK2, MYBPH, PER3, TPPP3, MPO, FAM24B,
EMR3, ENOSF1, TPM2, PTTG1IP, CELSR3, CD1A, FOLR2, BOLA3, OPLAH

Age 1.1610250

(2.9610270–3.6610237)
PARP3, PDGFRB, NEFH, P2RY2, SPINK2, GPER, NFKBIZ, ZSCAN18, IGLL1, BLK, ITM2C, C1RL

BMI 1.5610237

(2.6610250–2.7610226)
CX3CR1, MAP3K6, FCGBP, CD209, LYPD2, VSIG4, RPGRIP1, PACAP, LGALS3BP, ELA2, CD36,
ABCA1

HDL-chol 5.5610210

(2.2610215–2.761023)
PRDM1, SCD, DPEP2,TMEM43

LDL-chol 2.361023

(3.861027–0.5)
BYSL, ABCA1

Triglycerides 4.261026

(2.1610211–0.08)
MYLIP, PHGDH, ABCA1, ELA2, ABCG1, SASH1

SBP 5.0610220

(4.6610227–2.6610212)
CRIP1, GFOD1, DHRS9, NR4A2, TSC22D3, ARID5B, PAPSS2, HVCN1

DBP 1.8610210

(3.6610216–1.261024)
GFOD1, CRIP1, TPPP3, NR4A2,EMP1

CRP 6.1610251

(7.3610267–2.0610230)
FAM20A, CETP, FCGBP, COL9A2, C1RL, ADM, CREB5, APBB1IP, CX3CR1, C1QB, MS4A4A,
FCER1A, ALDH1A1, FLVCR2

Smoking 9.76102108

(1.96102128–3.7610284)
SASH1, P2RY6, PTGDS, PID1, CYP4F22, MMP25, WWC3, FUCA1, PDE4B, STAB1, GFRA2,
CLEC10A, CAMK1D, DHRS9, CNTNAP2, IQCK, ITGB7, SMAD6,

*The global P-value is the P-value obtained by comparing the model with all significant expression traits and covariates to the model with covariates only.
Expressions that are underlined are associated negatively to the risk factor (or to male gender), others are associated positively (or to female gender).
$Covariates: age and gender for BMI, CRP and smoking; age, gender and BMI for lipids and BP.
#Gender-associated traits were selected from autosomal genes only.
doi:10.1371/journal.pone.0010693.t006
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causality generally assumed to reflect the relation between genome

variability, expression and phenotype may be too simplistic to

account for a much more complex biological reality. The effects of

genetic variants may be too weak to allow detection even in a

study of this size. It is also important to keep in mind that most

reported eSNPs are acting in cis, whereas trans eSNPs may actually

be those that mainly drive the changes in gene expression that

affect disease risk.

Most importantly, the present study highlighted for the first time

the strong link existing between the transcriptome of an individual

and his (her) clinical and epidemiological profile. The fact that the

transcriptome tightly mirrors the variability of risk factors at a

cellular level may have profound implications from a biological

and clinical perspective. Until now, the traditional way of viewing

the role of genes in the susceptibility to human diseases was

through the effect of their variability of sequence. The present

findings suggest that another important, if not greater, impact of

genes on human phenotypes relates to the variability of their

expression, whatever the origin of this variability. The global

association observed between most cardiovascular risk factors and

the transcriptome and the fact that each risk factor could be

characterized by a limited and specific set of independent gene

expressions further suggests that this relationship might be

clinically relevant. This was particularly well illustrated by the

response of the transcriptome to cigarette smoking. We showed

that less than 20 genes among the 12,000 expressed in monocytes

could highly discriminate smokers and non-smokers, and among

them, four genes were sufficient to account for the strong

association existing between smoking and atherosclerosis. Whether

these genes are causally involved in the mechanisms linking

smoking to the development of atherosclerotic plaques or whether

they are only markers of ongoing pathological processes remains to

be elucidated.

In conclusion, the variability of the transcriptome of monocytes

can be viewed from two perspectives. On one hand it reflects the

accumulation of effects originating from the genome and the

environment and may inform on a number of ongoing processes

relevant to disease. On the other hand, it may reflect or anticipate

differences in monocytes biology that could have pathophysiolog-

ical implications. This dual perspective suggests that a better

understanding of the sources of variability of the transcriptome of

monocytes and other easily accessible cells, will contribute in an

important way to our understanding of complex diseases.

Materials and Methods

Ethic statement
The study protocol and drawing of the blood sample have been

approved by the local ethics committee and by the local and

federal data safety commissioners (Ethik-Kommission der Land-

esärztekammer Rheinland-Pfalz). All subjects included signed an

informed consent.

Study population
The Gutenberg Heart Study (GHS) is designed as a community-

based, prospective, observational single-center cohort study in the

Rhein-Main region in western mid-Germany. The primary aim of

the study is to improve the individual cardiovascular risk

Table 7. Smoking-related expression traits: association of expression with cis-acting eSNP, smoking and extent of atherosclerosis.

Smoking-related gene
expressions

Association of the best cis
eSNP with expression

Association of the
best cis eSNP with
the extent of
atherosclerosis

Association of expression
with smoking

Association of expression with
the extent of atherosclerosis

SNP number P-value t- value P-value t- value P-value t- value P-value

CAMK1D rs4478891 1.1610226 0.7 0.51 27.4 2.3610213 23.1 0.002

CLEC10A rs367953 3.6610212 0.5 0.65 13.0 5.4610237 20.4 0.68

CNTNAP2 rs1110144 8.6610212 21.1 0.28 6.5 7.3610211 1.7 0.082

CYP4F22 rs11253478 1.561026 0.0 1.00 217.5 1.8610262 22.2 0.027

DHRS9 rs1386426 4.361027 2.5 0.012 26.3 3.5610210 0.2 0.82

FUCA1 rs9424398 6.8610242 1.0 0.34 13.7 1.4610240 2.1 0.035

GFRA2 rs1479056 1.66102108 0.5 0.62 13.3 3.1610238 0.8 0.44

IQCK rs1879894 1.161027 0.6 0.52 27.6 2.7610214 21.7 0.089

ITGB7 rs17080239 1.061026 0.4 0.68 6.3 3.9610210 0.3 0.73

MMP25 rs7188573 4.7610218 0.0 1.00 15.6 5.4610251 3.6 3.5161024

P2RY6 rs3781305 9.061027 21.0 0.34 16.0 1.5610253 0.5 0.58

PDE4B rs4352802 4.561027 21.2 0.24 27.7 1.2610214 21.8 0.077

PID1 rs4972894 1.1610225 20.1 0.95 10.5 6.2610225 1.4 0.16

PTGDS rs10870158 6.061029 0.7 0.49 214.0 3.5610242 25.2 1.7761027

SASH1 rs17712470 5.6610214 0.5 0.63 20.5 5.1610283 4.4 1.3861025

SMAD6 rs17264185 2.7610215 21.5 0.13 6.8 9.6610212 1.6 0.11

STAB1 rs9867823 2.8610228 0.4 0.68 12.3 2.9610233 0.7 0.50

WWC3 rs1013478 8.061026 21.1 0.26 10.6 1.8610225 3.4 6.3261024

Atherosclerosis was assessed by the number of carotid plaques.
Associations of expressions with smoking and number of carotid plaques were adjusted on gender and age. Cis eSNPs significant at a study-wise level (P,5.78610212)
and associations with carotid plaques significant after correction for multiple testing (n = 18 tests) are shown in bold characters.
doi:10.1371/journal.pone.0010693.t007
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prediction by identifying genetic and non genetic risk factors

contributing to cardiovascular diseases, with a strong emphasis on

atherosclerosis.

A sample of eligible participants was randomly drawn from the

registers of the local registry offices in the city of Mainz and the

district of Mainz-Bingen. This sample was stratified in a ratio of

1:1 for gender and residence, and in equal numbers for decades of

age. Inclusion criteria were an age between 35 and 74 years and a

written consent; exclusion criteria were insufficient knowledge of

the German language to understand explanations and instructions,

and physical or psychic inability to participate in the examinations

in the study center. Individuals were invited for a 5-hour baseline-

examination to the study center where clinical examinations and

collection of blood samples were performed. The present analysis

was based on an initial sample of 3,336 subjects successively

enrolled into the GHS from April 2007 to April 2008. Genomic

DNA was isolated from all participants. Monocyte RNA was

isolated from half of the participants recruited each day to ensure

rapid sample processing and isolation of total RNA. For

approximately 1,500 study participants, both DNA and RNA

were available.

Measurement and definition of cardiovascular risk factors
Blood pressure measurements were performed by an automated

sphygmomanometer blood pressure meter (Omron 705CP-II,

OMRON Medizintechnik Handesgesellschaft GmbH, Germany)

after 5, 8 and 11 minutes of rest. The mean from the 2nd and 3rd

standardized measurement was calculated for the systolic and

diastolic blood pressure. For the anthropometric measurements,

calibrated, digital scales (Seca 862, Seca Germany), a measuring

stick (Seca 220, Seca, Germany) and a waist measuring tape were

used. The blood sampling was carried out under fasting

conditions. HDL-cholesterol, LDL-cholesterol, triglycerides and

C-reactive protein (CRP) measurements were performed on an

Architect c8000 by commercially available tests (CRP, Ultra

HDL, Direct LDL and Triglycerides) from Abbott (www.

abbottdiagnostics.de). All tests were measured under standardized

conditions in an accredited laboratory of the institute of clinical

chemistry and laboratory medicine at the University of Mainz.

Smoking was defined by dichotomizing the population into non-

smokers (never smokers and former smokers) and smokers

(occasional smoker, i.e. ,1 cigarette/day, and smoker, i.e. .1

cigarette/day).

Ultrasound of the Carotid Arteries and evaluation of the
number of atherosclerotic plaques

IMT was assessed with an ie33 ultrasound system (Philips, NL)

using an 11 to 3 MHz linear array transducer. Experienced

technologists blinded to participants’ clinical data made all

ultrasound measurements. The IMT was visualized bilaterally at

the far wall of the CCA. In brief, a cursor representing the region

of interest (10 mm) was positioned 1 cm in front of the beginning

before the carotid bulb. Evaluation was performed using an

automatic computerized system (Philips, NL Qlab software) and

triggering was performed according to the Q wave of the ECG to

enable measurement in complete relaxation of the ventricle. IMT

was recorded 1 cm before the carotid bulb in a part without

plaque on the left and right side. As mean IMT, the CCA was

reported with the sum of IMT of the left and right side and

afterwards divided by two. Plaques were defined as thickening of

the IMT of at least 1.5 mm and presence was checked in all

measured arteries. The number of plaques from both sides was

recorded and subjects being classified as plaque positive when at

least one plaque was measured on either side or plaque negative,

when no plaque was recorded.

Genotyping
For each participant genomic DNA was extracted from buffy-

coats prepared from EDTA blood samples (9 mL) using the

method of Miller [54]. Genotyping was performed using the

Affymetrix Genome-Wide Human SNP Array 6.0 (http://www.

affymetrix.com), as described by the Affymetrix user manual.

Genotypes were called using the Affymetrix Birdseed-V2 calling

algorithm and quality control was performed using GenABEL

(http://mga.bionet.nsc.ru/nlru/GenABEL/). Individuals with a

call rate below 97% or a too high autosomal heterozygosity (False

Discovery Rate ,1%) were excluded. After applying standard

quality criteria (minor allele frequency .1%, genotype call rate

.98% and P-value of deviation from Hardy-Weinberg equilib-

rium .1024), 675,350 out of 900,392 SNPs remained for

analysis.

Separation of monocytes
Separation of monocytes was conducted within 60 min after

blood collection and RNA was extracted the same day. Total

RNA was isolated from monocytes using Trizol extraction and

purification by silica-based columns. To separate monocytes,

8 mL blood was collected using the Vacutainer CPT Cell

Preparation Tube System (BD, Heidelberg, Germany) and

400 mL Rosette Sep Monocyte Enrichment Cocktail (StemCell

Technologies, Vancouver, Canada) was added immediately

after blood collection. Monocytes, not labeled by antibodies,

are collected as a highly enriched fraction at the interface

between plasma and the density medium in the tube. After

separation, cells were washed twice in ice cold PBS buffer

containing 2 mM EDTA. Success of monocyte separation was

controlled using an ADVIA 2120 Analyser (Siemens

Healthcare Diagnostics, Eschborn, Germany) for part of the

samples.

Preparation of RNA
After separation, cells were resuspended in 1.5 mL Trizol

Reagent (Invitrogen, Karlsruhe, Germany) immediately and

frozen at 220uC until isolation of RNA at the same day (maximal

storage time 5 h). After thawing, samples were transferred into

Phase Lock Gel Tubes (Eppendorf, Hamburg, Germany), 200 mL

chloroform was added and phases were separated by centrifuga-

tion at 4600 rpm for 15 min. Purification of total monocytes RNA

was performed using the RNeasy Mini kit (Qiagen, Hilden,

Germany) according to the manufactures’ Animal Cell Spin and

RNA Cleanup protocols including an additional DNase digestion

step. Total RNA was eluted in 20 mL RNase-free water. Yield of

RNA was checked spectrophotometrically by NanoDrop N-1000

measuring the OD260 as well as the ratio OD260 and OD280.

The integrity of the total RNA was assessed through analysis on an

Agilent Bioanalyzer 2100 (Agilent Technologies, Boeblingen,

Germany).

Genome-Wide Expression analysis
GWE analysis was performed on monocytes RNA samples

using the Illumina HT-12 v3 BeadChip (http://www.Illumina.

com). RNA samples were processed in batches of 96 samples. Two

hundred ng of total RNA was reverse transcribed, amplified and

biotinylated using the Illumina TotalPrep-96 RNA Amplification

Kit (Ambion/Applied Biosystems, Darmstadt, Germany). 700 ng

of each biotinylated cRNA was hybridized to a single BeadChip at
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58uC for 16–18 hours. BeadChips were scanned using the Illumina

Bead Array Reader.

Pre-processing of expression data
The summary probe-level data delivered by the Illumina scanner

(mean and SD computed over all beads for a particular probe) was

loaded in Beadstudio. The pre-processing done by the Illumina

software, at the level of the scanner and by Beadstudio included:

correction for local background effects, removal of outlier beads,

computation of average bead signal and SD for each probe and

gene, calculation of detection P-values using negative controls

present on the array, quantile normalization across arrays, check

of outlier samples using a clustering algorithm, check of positive

controls. Analyses were carried out on the mean level for all probes

in each gene. To stabilise variance across expression levels, we

applied an arcsinh transformation to the expression data [55].

Compared to a log transformation, this transformation has the

advantage not to discard negative expression values which can

occur in Illumina data.

The Illumina HT-12 BeadChip included 37,804 genes (some

probes being not assigned to RefSeq genes). A gene was declared

significantly expressed in the dataset, i.e. expressed above

background (as measured by the negative controls present on

each array), when the detection P-value calculated by Beadstudio

was ,0.05 in more that 5% of the samples. This resulted in 22,305

genes considered as being significantly expressed in our dataset.

After removing 8,058 putative and/or non well characterized

genes, i.e. gene names starting by KIAA (n = 165), FLJ (n = 214),

HS (n = 4,262), Cxorf (n = 842), MGC (n = 72), LOC (n = 2,503),

12,808 well characterized detected genes remained for

analysis.

Genome wide association analysis
To test all associations between SNPs and expressions in a

reasonable amount of time, a C script calling the GNU Scientific

Library (GSL) ‘‘TAMU ANOVA’’ (www.stat.tamu.edu/,aredd/

tamuanova/) was written. For all significant associations, results

were checked against the R-lm library [56]. When the numbers of

homozygotes for the minor allele of a SNP was lower than 30,

they were grouped with heterozygotes. We used a family-wise

error rate of 0.05 corrected for the number of tested SNP x

expression associations, which corresponds to declare significant

any association with a P-value ,5.78610212. To increase

robustness, associations significant by ANOVA were further

checked by a Kruskall-Wallis (KW) test and only associations with

a P-value ,10210 by the KW test were retained. P-values given

in the results and in the GHS-Express database are those

obtained by ANOVA. For SNPs on chromosome X, associations

with gene expression were assessed separately in women and men

and the P-values were combined using the Fisher method [57].

Association of gene expressions with CVD risk factors
The relationship between gene expression and each CHD risk

factor was tested by a linear regression model using R-lm, with

gene expression as the dependent variable. Association with age

was adjusted for gender while association with other risk factors

were adjusted for gender, age and, if specified, BMI. A square root

transformation was applied to CRP levels to remove positive

skewness. A study-wise statistical significance threshold of

3.961027 was used to correct for the number of tests (10 risk

factors 612,808 gene expressions). For each expression trait that

was associated with a risk factor and also affected by cis eSNPs, we

tested the interaction between the risk factor and the best cis eSNP

on expression in a regression model.

Global assessment of associations between the
monocyte transcriptome and CVD risk factors

The goal of this analysis was to identify subsets of expression

traits independently associated with each risk factor. To increase

the robustness of the analysis the population was randomly divided

into 2 sub-samples of equal size which were used for screening and

validation purpose respectively. The screening step was focused on

the subsets of expression traits that were associated with each

covariate-adjusted risk factor in univariate analysis at

P,3.961026 (Bonferroni correction for 12,808 expressions). Each

risk factor and corresponding subset of expression traits were

included as dependent and predictor variables respectively in a

forward stepwise regression model to identify expression traits that

were independently associated with the risk factor (P,0.01). Gene

expressions selected at the screening step were then jointly tested

in the validation sample for association with the risk factor by

multiple regression analysis. This screening/validation procedure

was repeated 250 times and for each risk factor, expression traits

associated (P,0.01) with the risk factor in more than 25% of the

replicates are reported.

Power of the SNP-expression association analysis
Power was calculated using the program Quanto (http://hydra.

usc.edu/GxE/). Assuming a quantitative expression trait with

mean 0 and SD 1, a sample size of 1,490 subjects, a type I error of

5.78610212 and an additive allele effect, the study had a 82%

power to detect the effect of a SNP explaining 4% of gene

expression.

Functional classification of genes
An ontology analysis was performed using the Panther database

(http://www.pantherdb.org/). Lists or sublists of genes involved in

associations with eSNPs or risk factors were compared to the

background list of the 12,808 genes. The P-value calculated by the

binomial statistic and Bonferroni-corrected was used.

Quality checking and exclusion of outliers
Population stratification and quality of genotypes and expres-

sion data were tested extensively and outliers were excluded on the

basis of multidimensional scaling analysis (see Methods S2)

GHS_Express
A downloadable SQL database compiling the results of the

various associations tested is available online (http://genecanvas.

ecgene.net/uploads/ForReview/), see also Methods S1. This

database can be used to test specific hypotheses.
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Macrophages and adipocytes in human obesity: adipose tissue gene expression

and insulin sensitivity during calorie restriction and weight stabilization.

Diabetes 58: 1558–1567.
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