70 research outputs found

    Hybrid Quantum-Classical Monte-Carlo Study of a Molecule-Based Magnet

    Full text link
    Using a Monte Carlo (MC) method, we study an effective model for the Fe(II)Fe(III) bimetallic oxalates. Within a hybrid quantum-classical MC algorithm, the Heisenberg S=2 and S=5/2S'=5/2 spins on the Fe(II) and Fe(III) sites are updated using a quantum MC loop while the Ising-like orbital angular momenta on the Fe(II) sites are updated using a single-spin classical MC flip. The effective field acting on the orbital angular momenta depends on the quantum state of the system. We find that the mean-field phase diagram for the model is surprisingly robust with respect to fluctuations. In particular, the region displaying two compensation points shifts and shrinks but remains finite.Comment: 8 pages, 7 figure

    Magnetic and thermal properties of 4f-3d ladder-type molecular compounds

    Full text link
    We report on the low-temperature magnetic susceptibilities and specific heats of the isostructural spin-ladder molecular complexes L2_{2}[M(opba)]_{3\cdot xDMSOy\cdot yH2_{2}O, hereafter abbreviated with L2_{2}M3_{3} (where L = La, Gd, Tb, Dy, Ho and M = Cu, Zn). The results show that the Cu containing complexes (with the exception of La2_{2}Cu3_{3}) undergo long range magnetic order at temperatures below 2 K, and that for Gd2_{2}Cu3_{3} this ordering is ferromagnetic, whereas for Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} it is probably antiferromagnetic. The susceptibilities and specific heats of Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} above TCT_{C} have been explained by means of a model taking into account nearest as well as next-nearest neighbor magnetic interactions. We show that the intraladder L--Cu interaction is the predominant one and that it is ferromagnetic for L = Gd, Tb and Dy. For the cases of Tb, Dy and Ho containing complexes, strong crystal field effects on the magnetic and thermal properties have to be taken into account. The magnetic coupling between the (ferromagnetic) ladders is found to be very weak and is probably of dipolar origin.Comment: 13 pages, 15 figures, submitted to Phys. Rev.

    Enforcing Multifunctionality: A Pressure-Induced Spin-Crossover Photomagnet

    Get PDF
    Photomagnetic compounds are usually achieved by assembling preorganized individual molecules into rationally designed molecular architectures via the bottom-up approach. Here we show that a magnetic response to light can also be enforced in a nonphotomagnetic compound by applying mechanical stress. The nonphotomagnetic cyano-bridged Fe<sup>II</sup>–Nb<sup>IV</sup> coordination polymer {[Fe<sup>II</sup>(pyrazole)<sub>4</sub>]<sub>2</sub>[Nb<sup>IV</sup>(CN)<sub>8</sub>]·4H<sub>2</sub>O}<sub><i>n</i></sub> (<b>FeNb</b>) has been subjected to high-pressure structural, magnetic and photomagnetic studies at low temperature, which revealed a wide spectrum of pressure-related functionalities including the light-induced magnetization. The multifunctionality of <b>FeNb</b> is compared with a simple structural and magnetic pressure response of its analog {[Mn<sup>II</sup>(pyrazole)<sub>4</sub>]<sub>2</sub>[Nb<sup>IV</sup>(CN)<sub>8</sub>]·4H<sub>2</sub>O}<sub><i>n</i></sub> (<b>MnNb</b>). The <b>FeNb</b> coordination polymer is the first pressure-induced spin-crossover photomagnet

    Metal-Organic Layers in Molecular Magnets and Superconductors

    No full text

    Solution-State Spin Crossover in a Family of [Fe(L)2(CH3CN)2](BF4)2 Complexes

    Get PDF
    We report herein on five new Fe(II) complexes of general formula [Fe(L)2(NCCH3)2](BF4)2•xCH3CN (L = substituted 2-pyridylimine-based ligands). The influence of proximally located electron withdrawing groups (e.g., NO2, CN, CF3, Cl, Br) bound to coordinated pyridylimine ligands has been studied for the effect on spin crossover in their Fe(II) complexes. Variable-temperature UV-visible spectroscopic studies performed on complexes with more strongly electronegative ligand substituents revealed spin crossover (SCO) in the solution, and thermodynamic parameters associated with the spin crossover were estimated.</jats:p

    An unusual phase transition in the crystal structure and physical properties of (TTF)[MO(CN)]·4HO, where TTF = tetrathiafulvalene

    No full text
    At 270 K, the charge transfer salt(TTF)[Mo(CN)]·4H O,I, crystallizes in the triclinic space group P1̄ with a = 9.9094(2), b = 10.6781(2), c = 23.6086(7) Å, a = 75.7910(8), β = 88.6010(9), γ = 78.5250(8)°, V = 2372.5(1) Å and Z = 2. At 120 K, the space group is unchanged with a = 9.7990(7), b = 10.6630(5), c = 22.9940(2) Å, a = 79.981(4), β = 89.798(4), γ = 79.013(4)°, V = 2321.5 Å and Z = 2. On comparing the two sets of data, we see significant changes in the cell parameters, most notably in the angle a. Variable temperature crystallographic studies indicate a first order phase transition accompanied by hysteresis, which corresponds to a change in the transport properties.I is a semiconductor and the high temperature activation energy of 0.06 eV changes sharply to 0.15 eV below 236 K. Bulk magnetic susceptibility and ESR measurements indicate that the TTF molecules are antiferromagnetically coupled. The temperature dependence of the EPR spectrum changes from 300-200 K, in approximate agreement with the transport and structural results. The optical spectrum of (TTF)[Mo(CN)]·4HO consists of several broad bands assigned to TTF charged molecules, to [Mo(CN)] and to charge transfer from the donors to the acceptor in the near infra-red range. Preliminary magnetic susceptibility measurements under light irradiation with a multi-line (752.5-799.3 nm) laser were also performed, but no photomagnetic effect was noted

    An unusual phase transition in the crystal structure and physical properties of (TTF)[MO(CN)]·4HO, where TTF = tetrathiafulvalene

    No full text
    At 270 K, the charge transfer salt(TTF)[Mo(CN)]·4H O,I, crystallizes in the triclinic space group P1̄ with a = 9.9094(2), b = 10.6781(2), c = 23.6086(7) Å, a = 75.7910(8), β = 88.6010(9), γ = 78.5250(8)°, V = 2372.5(1) Å and Z = 2. At 120 K, the space group is unchanged with a = 9.7990(7), b = 10.6630(5), c = 22.9940(2) Å, a = 79.981(4), β = 89.798(4), γ = 79.013(4)°, V = 2321.5 Å and Z = 2. On comparing the two sets of data, we see significant changes in the cell parameters, most notably in the angle a. Variable temperature crystallographic studies indicate a first order phase transition accompanied by hysteresis, which corresponds to a change in the transport properties.I is a semiconductor and the high temperature activation energy of 0.06 eV changes sharply to 0.15 eV below 236 K. Bulk magnetic susceptibility and ESR measurements indicate that the TTF molecules are antiferromagnetically coupled. The temperature dependence of the EPR spectrum changes from 300-200 K, in approximate agreement with the transport and structural results. The optical spectrum of (TTF)[Mo(CN)]·4HO consists of several broad bands assigned to TTF charged molecules, to [Mo(CN)] and to charge transfer from the donors to the acceptor in the near infra-red range. Preliminary magnetic susceptibility measurements under light irradiation with a multi-line (752.5-799.3 nm) laser were also performed, but no photomagnetic effect was noted
    corecore