353 research outputs found

    Four essays on the integration of revenue management and customer-centric marketing

    Full text link
    University of Technology Sydney. Faculty of Business.The concurrent use of customer centric marketing (CCM) and perishable asset revenue management (RM) practices in capacity constrained service firms can negatively influence customer demand because the contradictory outcomes of the two systems might be perceived as unfair. This thesis establishes why and how the simultaneous employment of CCM and RM practices causes fairness concerns, negatively affects customer demand, and hinders the aim of revenue maximisation. We propose a conceptualisation embedded in expected utility theory and develop a model of customer choices which accounts for fairness judgements. According to this model, purchase decisions for services are based on the utility evaluation of service offerings and their prices. This evaluation is, in turn, influenced by fairness coding of these service offerings relative to attribute-specific reference points. The rationale underlying this coding phase is anchored in the justice and fairness literature and theories of behavioural decision making. Findings from focus group research and stated-preference choice experiments with airline passengers and hotel guests empirically confirm the existence of a reference-dependent fairness adjustment component in customers’ utility assessments in addition to utility directly generated from product attributes. Fairness related comparisons to reference points and resulting gains or losses apply not only to price, but also to product attributes induced by RM and CCM induced attributes. In accordance with prospect theory, we confirm that losses generally weigh more than gains. Customers who are exposed to comprehensive CCM practices, represented as members of frequent traveller programs, are most susceptible to perceived fairness, and have a lower willingness to pay than their counterparts. The preference coefficients for CCM and RM attributes obtained from conditional logit choice models, as well as the preference coefficients for attribute specific fairness adjustments, are then applied to predict how the attractiveness of flight or hotel options changes if a firm adapts its RM strategy to customer segments with differing levels of profitability. Predicted changes to choice probabilities, and subsequently demand and revenues, demonstrate the superiority of an integrated CCM-RM approach with segment-specific RM and suggests potential revenue increases of up to 33.15%

    Do Loyalty Program Membership and Status Levels affect Service Customers' Choices?

    Full text link
    This paper examines the effects of loyalty program membership as such, and impending upgrade or downgrade to a different status level, on customer brand preferences for flights and hotels. The results show that members have a significantly higher brand preference for their respective airline or hotel group than non-members, and those close to a change in status level have an even stronger brand preference compared to those who are not, which is also reflected in their willingness to pay. The empirical findings illustrates the ability of frequent traveller programs to affect purchase choices if the customer fears that earned status benefits are about to be lost

    FLOTATION MATERIALS FOR AERIAL DELIVERY OF ACETAMINOPHEN TOXIC BAITS TO BROWN TREESNAKES

    Get PDF
    Polyvinyl chloride (PVC) tubes are effective bait stations for delivering dead neonatal mice (DNM) treated with the oral toxicant, 80 mg acetaminophen, to brown treesnakes (Boiga irregularis) in accessible jungle forest on Guam. However, PVC tubes are not practical for delivery of baits to remote areas of jungle or the forest canopy. Further, it is important that baits entangle in the canopy and not fall to the ground where they can be scavenged by non-target animals such as crabs. Data from helicopter aerial deployment of untreated DNM with radio transmitters that landed on the ground in areas of high coconut crab (Birgus latro) and hermit crab (Coenobita spp.) abundance showed that 67% of DNM were taken by crabs and 11% by monitor lizards (Varanus indicus). In contrast, in low crab abundance areas crabs took 24% of the DNM that landed on the ground. It is evident from these data that a flotation system that delivers DNM to the canopy is needed; otherwise non-target animals will remove DNM, making them unavailable for snakes. Seven aerial flotation devices were evaluated. Promising aerial devices are two types of commercial cardboard paper streamers that resulted in 75% - 85% of the DNM becoming entangled in the canopy

    Feasibility of Enceladus plume biosignature analysis: Successful capture of organic ice particles in hypervelocity impacts

    Get PDF
    Enceladus is a compelling destination for astrobiological analyses due to the presence of simple and complex organic constituents in cryovolcanic plumes that jet from its subsurface ocean. Enceladus plume capture during a flyby or orbiter mission is an appealing method for obtaining pristine ocean samples for scientific studies of this organic content because of the high science return, reduced planetary protection challenges, and lower risk and expense compared to a landed mission. However, this mission profile requires sufficient amounts of plume material for sensitive analysis. To explore the feasibility and optimization of the required capture systems, light gas gun experiments were carried out to study organic ice particle impacts on indium surfaces. An organic fluorescent tracer dye, Pacific Blueℱ, was dissolved in borate buffer and frozen into saline ice projectiles. During acceleration, the ice projectile breaks up in flight into micron‐sized particles that impact the target. Quantitative fluorescence microscopic analysis of the targets demonstrated that under certain impact conditions, 10–50% of the entrained organic molecules were captured in over 25% of the particle impacts. Optimal organic capture was observed for small particles (d ~ 5–15 ”m) with velocities ranging from 1 to 2 km s−1^{−1}. Our results reveal how organic capture efficiency depends on impact velocity and particle size; capture increases as particles get smaller and as velocity is reduced. These results demonstrate the feasibility of collecting unmodified organic molecules from the Enceladus ice plume for sensitive analysis with modern in situ instrumentation such as microfluidic capillary electrophoresis (CE) analysis with ppb organic sensitivity

    Characterizing organic particle impacts on inert metal surfaces: Foundations for capturing organic molecules during hypervelocity transits of Enceladus plumes

    Get PDF
    The presence and accessibility of a sub‐ice‐surface saline ocean at Enceladus, together with geothermal activity and a rocky core, make it a compelling location to conduct further, in‐depth, astrobiological investigations to probe for organic molecules indicative of extraterrestrial life. Cryovolcanic plumes in the south polar region of Enceladus enable the use of remote in situ sampling and analysis techniques. However, efficient plume sampling and the transportation of captured organic materials to an organic analyzer present unique challenges for an Enceladus mission. A systematic study, accelerating organic ice‐particle simulants into soft inert metal targets at velocities ranging 0.5–3.0 km s−1, was carried out using a light gas gun to explore the efficacy of a plume capture instrument. Capture efficiency varied for different metal targets as a function of impact velocity and particle size. Importantly, organic chemical compounds remained chemically intact in particles captured at speeds up to ~2 km s−1. Calibration plots relating the velocity, crater, and particle diameter were established to facilitate future ice‐particle impact experiments where the size of individual ice particles is unknown

    Transcriptional analysis of the response of \u3ci\u3eC. elegans\u3c/i\u3e to ethanol exposure

    Get PDF
    Ethanol-induced transcriptional changes underlie important physiological responses to ethanol that are likely to contribute to the addictive properties of the drug. We examined the transcriptional responses of Caenorhabditis elegans across a timecourse of ethanol exposure, between 30 min and 8 h, to determine what genes and genetic pathways are regulated in response to ethanol in this model. We found that short exposures to ethanol (up to 2 h) induced expression of metabolic enzymes involved in metabolizing ethanol and retinol, while longer exposure (8 h) had much more profound effects on the transcriptome. Several genes that are known to be involved in the physiological response to ethanol, including direct ethanol targets, were regulated at 8 h of exposure. This longer exposure to ethanol also resulted in the regulation of genes involved in cilia function, which is consistent with an important role for the effects of ethanol on cilia in the deleterious effects of chronic ethanol consumption in humans. Finally, we found that food deprivation for an 8-h period induced gene expression changes that were somewhat ameliorated by the presence of ethanol, supporting previous observations that worms can use ethanol as a calorie source

    Finally, inkjet printed metal halide perovskite LEDs utilizing seed crystal templating of salty PEDOT PSS

    Get PDF
    Solution processable metal halide perovskites are increasingly implemented in perovskite based light emitting diodes PeLEDs . Especially green PeLEDs based on methylammonium lead bromide MAPbBr3 composites exhibit impressive optoelectronic properties, while allowing processing by low cost and upscalable printing methods. In this study, we have investigated the influence of potassium chloride KCl blended into the common hole injection material poly 3,4 ethylenedioxythiophene polystyrene sulfonate PEDOT PSS to boost PeLED device performance. The inclusion of KCl firstly results in a change in morphology of the PEDOT PSS layer, which then acts as a template during deposition of the perovskite layer. A MAPbBr3 polyethylene glycol PEG composite was used, which does not require the deposition of an anti solvent droplet to induce preferential perovskite crystallization and is therefore suitable for spin coating and scalable inkjet printing processes. PeLEDs utilizing the KCl induced templating effect on a planar PEDOT PSS MAPbBr3 PEG architecture show improved performance, predominantly due to improved crystallization. PeLEDs incorporating spin coated perovskite layers yield a 40 fold increase in luminance 8000 cd m 2 while the turn on voltage decreases to 2.5 V. KCl modified PEDOT PSS contact layers enabled the realization of inkjet printed PeLEDs with luminance increased by a factor of 20 at a maximum of 4000 cd m 2 and a turn on voltage of 2.5 V. This work paves the way for inkjet printed perovskite light emitting devices for a wide variety of low cost and customizable application
    • 

    corecore