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Transcriptional analysis 
of the response of C. elegans 
to ethanol exposure
Mark G. Sterken1,5, Marijke H. van Wijk1,5, Elizabeth C. Quamme2, Joost A. G. Riksen1, 
Lucinda Carnell4, Laura D. Mathies2,3, Andrew G. Davies2,3, Jan E. Kammenga1 & 
Jill C. Bettinger2,3*

Ethanol-induced transcriptional changes underlie important physiological responses to ethanol 
that are likely to contribute to the addictive properties of the drug. We examined the transcriptional 
responses of Caenorhabditis elegans across a timecourse of ethanol exposure, between 30 min and 8 h, 
to determine what genes and genetic pathways are regulated in response to ethanol in this model. We 
found that short exposures to ethanol (up to 2 h) induced expression of metabolic enzymes involved in 
metabolizing ethanol and retinol, while longer exposure (8 h) had much more profound effects on the 
transcriptome. Several genes that are known to be involved in the physiological response to ethanol, 
including direct ethanol targets, were regulated at 8 h of exposure. This longer exposure to ethanol 
also resulted in the regulation of genes involved in cilia function, which is consistent with an important 
role for the effects of ethanol on cilia in the deleterious effects of chronic ethanol consumption in 
humans. Finally, we found that food deprivation for an 8-h period induced gene expression changes 
that were somewhat ameliorated by the presence of ethanol, supporting previous observations that 
worms can use ethanol as a calorie source.

Alcohol is a commonly abused drug worldwide. Abuse of alcohol causes significant harm, contributing to approx-
imately 5% of the global burden of disease1. Alcohol Use Disorder (AUD), the compulsive use of alcohol despite 
negative consequences, is the product of long-term misuse of alcohol (ethanol) that results in physiological 
changes in the brain and other organ systems. Such changes are likely to underlie both the pathological and the 
addictive characteristics of alcohol. Changes in gene expression can be important in the long-term consequences 
of ethanol exposure, so our goal is to understand the landscape of transcriptional responses to ethanol.

We use the nematode worm C. elegans as a model to study the physiological effects of ethanol. The molecu-
lar effects of ethanol in worms are directly relevant to the molecular effects of ethanol in mammals including 
humans2. C. elegans are intoxicated by exogenous ethanol, and they show a dynamic behavioral response to 
ethanol exposure. We observe behavioral depression within 10 min of exposure, which is a progressive slowing 
and loss of coordinated locomotion that reaches a plateau by 10 min of exposure3,4. The worms develop acute 
functional tolerance (AFT) to ethanol, which we first observe as an increase in locomotion speed between 10 and 
30 min of exposure, despite a gradual increase in internal ethanol concentration over the exposure time3,5,6. We 
have extensively studied the mechanisms underlying these acute behavioral responses to ethanol3,5–9. However, 
we know less about the transcriptional modifications induced by ethanol, which are likely to underlie long term 
physiological adaptations to ethanol. We and others have observed that C. elegans develop physical dependence 
on ethanol over extended exposures; paradigms range between 6 and 24 h of exposure. In each case, dependence 
is observable as behavioral changes when the animals are withdrawn5,10,11. This suggests that there are important 
functional changes that occur over the exposure time, and we predict that modulation of transcription is likely 
to lead to a subset of these changes.

Here, we conduct a comprehensive analysis of the transcriptional responses across a time course of etha-
nol exposure in the nematode C. elegans. We examine the very acute responses at 30 and 60 min of exposure, 
responses after 2 h of exposure, and later responses after 8 h of continuous exposure. We observe waves of gene 
expression responses to ethanol, and we find that the largest number of gene expression changes are observable 
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after 8 h of ethanol exposure. Among these are transcriptional changes due to food deprivation that is moderated 
by ethanol exposure, demonstrating that worms can use ethanol as a calorie source.

Methods
Nematode husbandry.  Caenorhabditis elegans strain wild-type N2 (isolated in Bristol, UK) animals were 
maintained at 20 °C on nematode growth medium (NGM) plates in the presence of Escherichia coli strain OP5012.

Age‑synchronization.  Populations were age-synchronized by allowing gravid adult hermaphrodites to lay 
eggs on a well-seeded plate for three hours. The adults were removed, and the resulting population was allowed 
to grow for three days at 20 °C until they were first-day adults.

Drug treatment.  Biological replicates, (n = 4) for a given timepoint, were generated on different days. 15 
mL conical treatment tubes were prepared by adding M9+/− 100% ethanol to yield 0 mM or 400 mM ethanol. 
Approximately 2000 age-synchronized well-fed young adult worms were washed off of culture plates with M9 
buffer into 15 mL conical tubes. The animals were allowed to settle for 2 min, and the supernatant was removed. 
Worms were washed with 5 mL M9, allowed to settle for 2 min, and the supernatant was removed. Each popula-
tion of worms was divided into two halves and each half was added to a prepared treatment tube so that matched 
0 mM and 400 mM treatments were generated. Worms were placed on a rotator at room temperature for the 
treatment time (0, 30, 60, 120, or 480 min). After the exposure was complete, tubes were removed from the rota-
tor, the worms were allowed to settle for 2 min, and the supernatant was removed. Worms were washed twice 
with 5 mL M9, allowed to settle for 2 min, and the supernatant was removed. The resulting worm + M9 slurry 
was transferred to a microfuge tube and spun for one minute. Supernatant was removed to generate as dry a pel-
let as possible, and the worms were flash frozen in liquid nitrogen. Samples were then stored at − 80 °C. Worm 
samples were generated in the Bettinger laboratory (Richmond, Virginia, USA) and shipped frozen on dry ice to 
the Kammenga laboratory (Wageningen, NL) for processing and RNA analysis.

RNA isolation.  RNA was isolated as described previously13. Briefly, we used a Maxwell 16 AS2000 instru-
ment with a Maxwell 16 LEV simplyRNA Tissue Kit (both Promega Corporation, Madison, WI, USA) following 
the manufacturer’s instructions with minor modifications. After the lysis step, 10 μL, instead of 25 μL, of a 20 
mg/mL stock solution of proteinase K was added to each sample. Samples were incubated for 10 min at 65 °C 
and spun at 1000 rpm in a ThermoMixer (Eppendorf, Hamburg, Germany). Samples were cooled on ice for 1 
min before loading into the cartridge, after which the standard protocol was followed. RNA samples were stored 
at − 80 °C until further use.

cDNA synthesis, labelling, microarray hybridization and data extraction.  The microarray prep-
aration was conducted as described in the ‘Two-Color Microarray-Based Gene Expression Analysis; Low Input 
Quick Amp Labeling’-protocol, version 6.0 from Agilent (Agilent Technologies, Santa Clara, CA, USA). Based 
on RNA quantification by NanoDrop, we used 100 or 200 ng RNA as input for cDNA synthesis. The microarrays 
used were the Agilent C. elegans (V2) Gene Expression Microarray 4X44K slides. The microarrays were scanned 
with an Agilent High Resolution C Scanner using the recommended settings. After scanning, data was extracted 
with Agilent Feature Extraction Software (version 12.1.1.1), (https://​www.​agile​nt.​com/​en/​produ​ct/​mirna-​micro​
array-​platf​orm/​mirna-​micro​array-​softw​are/​featu​re-​extra​ction-​softw​are-​228496).

Normalization and data transformation.  The microarray data was normalized using the Limma pack-
age in “R” (version 3.5.3, ×64)14. As recommended, the within array normalization used the ‘LOESS’ method and 
between-array normalization used the ‘quantile’ method15,16. After normalization, the normalized intensities 
were log2 transformed (I) and also a log2 ratio with the mean of each spot was calculated (R).

As we noticed a small dye-effect (from comparing the two dye-swaps) and batch effect based on an initial 
principal component analysis (< 5% of variance), we corrected the data for both dye and batch effects, by sub-
tracting these effects as estimated based on the linear model

where I is the log2 normalized intensity of spot i (1, 2, …, 45,220) of sample j, which was explained over timepoint 
T (0, 30, 60, 120, or 480 min of treatment), ethanol treatment E (0 mM or 400 mM), dye D (either Cy3 or Cy5), 
batch B (one out of four batches), and the interaction between timepoint and ethanol exposure, and residual 
variance e. Subsequently, the effects for dye and batch were subtracted from the normalized data.

Data analysis and visualization.  Data analysis was done in “R” (version 3.5.3, × 64) with custom written 
scripts17, accessible via https://​git.​wur.​nl/​publi​shed_​papers/​sterk​en_​vanwi​jk_​2020. The dplyr and tidyr packages 
were used for organization18,19, and plotting was done with ggplot220. For gene-level analysis the annotations 
from WS258 were used, spots were re-mapped versus WS258 and probes with double or ambiguous (partial) hits 
were censored21. Transcriptome data were deposited at ArrayExpress under E-MTAB-9663.

Quantitative PCR.  As a confirmation of our microarray results, we performed quantitative PCR analysis 
on selected genes. We tested mod-1 at 30 min of exposure. We tested bas-1, che-3, fat-1, slo-1, unc-10, unc-13, 
unc-25, unc-47, and unc-49 at 480 min of exposure. We generated new cDNA from the biological samples tested 

Ii,j ∼ Tj + Ej + Dj + Bj + Tj × Ej + ei,j

https://www.agilent.com/en/product/mirna-microarray-platform/mirna-microarray-software/feature-extraction-software-228496
https://www.agilent.com/en/product/mirna-microarray-platform/mirna-microarray-software/feature-extraction-software-228496
https://git.wur.nl/published_papers/sterken_vanwijk_2020
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in the microarray analysis. cDNA was made from 500 ng of RNA using the GoScript Reverse Transcriptase 
kit (Promega Corporation, Madison, WI, USA) following the recommended protocol with random hexamers 
(Thermo Scientific, Waltham, MA, USA). Gene expression was quantified by reverse transcriptase- quantitative 
PCR (RT-qPCR) using custom-designed primers (Supplemental Table 9). RT-qPCR was performed on the CFX 
Connect using iQ SYBR Green Supermix (Biorad, Hercules, CA, USA) according to the recommended protocol. 
Primer efficiencies were checked by testing dilution ranges in N2 populations. Gene expression in each sample 
was quantified for the gene of interest and two reference genes (Y37E3.8 & rpl-6) in technical duplicate22. Data 
was analyzed per time point. Data was transformed with the following formula:

Relative gene expression was calculated using:

Quantitative PCR statistics.  To determine statistical significance over multiple samples we performed an 
ANOVA, as provided by R.

Principal component analysis.  To understand sources of variance we used principal component analysis, 
as provided in “R” by the prcomp function (scale. = TRUE). Principal component analysis was done on the log2 
ratio with the mean transformed normalized data.

Linear model.  To determine which gene-expression was affected by the experimental variables, we used the 
following linear model

where I is the log2 normalized intensity of spot i (1, 2, …, 45,220) of sample j, which was explained over ethanol 
treatment E (0 mM or 400 mM) and residual variance e. This model was used per time-point separately (0, 30, 
60, 120, and 480 min of 0 mM ethanol exposure). For each treatment time the combination of the four biological 
replicates was assayed.

To understand the between-timepoint dynamics, we calculated the difference between 0 and 400 mM ethanol 
exposed samples within the same batch and timepoint, and used the model

where Y is the difference between 0 and 400 mM ethanol exposed samples of spot i (1, 2, …, 45,220) of batch k, 
which was explained over two subsequent timepoints T (0–30, 30–60, 60–120, or 120–480 min after the start 
of the experiment).

These linear models yielded information on gene expression changes within and between the five timepoints. 
The significances from both linear models were corrected for multiple testing using a Benjamini–Hochberg cor-
rection (as implemented in the p.adjust function in “R”)23. This was done on a general threshold of − log10(p) > 3.7, 
to standardize effect-size detection over the various factors. This threshold resulted in false-discovery rates 
between q = 0.0020 (0 mM ethanol at 480 min) and q = 0.123 (0–400 mM ethanol between 60–120 min). Com-
bined, this set of transcriptional differences was composed of 5968 spots representing 3603 genes. Excluding 
the analyses involving the 480-min timepoint, the set includes 959 spots representing 660 genes (Supplemental 
Table 1; Supplemental Table 3; Fig. 3; Supplemental Table 4).

Transcriptional time estimation.  The relative transcriptional age between the samples was estimated by 
their transcriptional profiles. We used a temporal expression ruler generated by Snoek et al., 2014, that consisted 
of 2195 microarray spots (1266 genes) that were linearly up- or down-regulated (log10(p) > 6 and an absolute 
effect-size > 0.1 per hour) throughout development (41.5–72 h) (Supplemental Table 2)24. The data underlying 
the choice of the microarray spots can be obtained from E-MTAB-7019. In our studies, we only examined adults, 
so here we used these genes to estimate the general transcriptional progression in our animals, rather than devel-
opmental age. We compared the expression data of these genes in our data to the ruler to give transcriptional 
“age” per gene per sample using the function predict in “R” (version 3.5.3, ×64). We subsequently calculated the 
average age from the inferred ages per gene to obtain an estimated age for each sample. As these ages are strictly 
relative, the estimated ages were subsequently transformed into a normal standard distribution for relative age 
estimation and sample comparison.

K‑means clustering.  To identify time-dependent patterns in the set of differentially expressed genes, we 
used k-means clustering. We used the log2 ratio with the mean transformed data (R) of the 959 spots that showed 
significant differences for the clustering analysis. This excluded the 480-min timepoints. To reliably identify pat-
terns, we averaged values per spot per time per treatment over the four biological replicates (for the 0-, 30-, 60-, 
and 120-min timepoints). We used the “the elbow” method to determine the appropriate number of clusters by 
analyzing the within-cluster sum of square (WSS)25. The WSS measures the variability of the observations within 
each cluster. The number of clusters is generally considered appropriate when adding another cluster does not 

Qgene = 2
Ctcontrolgeneaverage−Ctgene

E =
Qgene

0.5 ∗
(

Qrpl−6 + QY37E3.8

)

Ii,j ∼ Ej + ei,j

Yi,k ∼ Tk + ei,k
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substantially improve the overall WSS. We used the function fviz_nbclust from the R package NbClust26. We 
clustered the selected spots using kmeans in R, using the Hartigan and Wong algorithm with 5 centers, 10,000 
iterations and 50 random starts. These settings yielded a stable outcome when clustering was repeated (Sup-
plemental Table 6).

Enrichment analysis.  We performed enrichment analyses for the linear model in R, using a hypergeomet-
ric test and various annotations. We used the following databases: the WS258 gene class annotations, the WS258 
GO-annotation, anatomy terms, phenotypes, RNAi phenotypes, developmental stage expression, and disease 
related genes (www.​wormb​ase.​org)27; the ModERN transcription factor binding sites (http://​epic.​gs.​washi​ngton.​
edu/​modERN/)28, which were mapped to transcription start sites (as described by29) (Supplemental Table 5).

Enrichments were selected based on the number of genes in a category n > 3, number of overlapping genes in 
the query n > 2, and significance as determined by a Bonferroni-corrected hypergeometric test.

For the enrichment analysis for the k-means clusters we used g:profiler under the default setting but excluding 
electronic GO annotations30. We calculated all enrichments based on unique gene names (Supplemental Table 7).

Transcription factor binding site enrichment analysis.  To ask if there are transcription factor bind-
ing sites that are enriched in ethanol responsive genes, we used the ModERN database to obtain transcription 
factor binding sites in C. elegans28. We mapped transcription start sites according to Tepper et al.29. We per-
formed enrichment analysis with a hypergeometric test on genes with the following criteria: FDR-corrected p 
value < 0.05, transcription factor binding site category > 3, and the size of the overlap > 2. After enrichment analy-
sis and significance filtering, the enrichment fold change between different ethanol exposures was averaged.

Results
Transcriptional response to ethanol exposure.  To study the transcriptional response to ethanol expo-
sure, we conducted a time course experiment. We exposed young adult, wild-type N2 worms for 0, 30, 60, 120, or 
480 min to either 0 mM or 400 mM ethanol, isolated RNA, and analyzed the transcriptional response to ethanol 
using microarrays. We chose 400 mM ethanol for our exposure because we have extensively characterized the 
behavioral responses to ethanol at this concentration and have found that the genes affecting ethanol response 
behaviors at this concentration are also important in ethanol responses in mammals, including humans2,9,31. The 
microarray data was normalized and transformed for analysis. As a confirmation of the accuracy of our microar-
ray results, we performed quantitative PCR of ten selected genes (Supplemental Fig. 1); the results confirmed our 
microarray analysis. Principal component analysis revealed that there was a large distinction (42.6% of the vari-
ance) between the group of 0–2 h exposure samples and the 8-h exposure samples. Within the 0–2 h exposure 
samples, the length of the experimental treatment accounted for another 16.7% of the variance in the samples, 
independent of the ethanol concentration. This indicated that the treatment paradigm itself, rather than ethanol 
exposure, caused most of the transcriptional effects (Fig. 1). 9% of the variance could be explained by the ethanol 
treatment (principal components 5 and 6, Fig. 1).

We were interested in why our treatment had such strong effects on the transcriptomes of the animals. We 
used a method described by Snoek et al., 201424, that used the behavior of genes whose expression vary linearly 
over time as a measure of the “developmental age” of animals to assess the response of animals to the duration 
of the treatment. Importantly, during the ethanol exposure, the animals were food-deprived, which is known to 
have profound effects on transcription32. Ethanol treatment has also been observed to variably delay embryonic 
and postembryonic development in worms33. We hypothesized that the 8-h exposure to ethanol and starvation 
might have global consequences on transcriptional activity, which we could detect by effects on the global “tran-
scriptional age” of the animals. We generated a transcriptional “clock” by using data from Snoek et al., 201424, 
selecting a subset of transcripts that are linearly up- or down-regulated across late stages of postembryonic 
development of worms (Supplemental Table 2). We used these transcripts to estimate the “transcriptional age” of 
the animals in our ethanol exposure experiment. We found that animals treated for 0, 30, 60, and 120 min were 

Figure 1.   Principal component analysis. We identified six principal components contributing to the variation in 
the transcriptional responses in our assays (> 4% of variance). The colors indicate the time of 0 mM or 400 mM 
ethanol exposure (darker colors are longer exposure times). Circles: 0 mM ethanol exposed; Triangles: 400 mM 
ethanol exposed. The different principal components are depicted on the x- and y-axes.

http://www.wormbase.org
http://epic.gs.washington.edu/modERN/
http://epic.gs.washington.edu/modERN/
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indistinguishable from each other in this analysis. However, when we looked at animals that had been treated 
for 8 h, we found that they displayed a different transcriptional “age” from those of the other treatments. The 
8-h treatment animals were harvested when they were 6–8 h chronologically older than all the other animals in 
this study. Therefore, if there was no effect of treatment on transcriptional age, then we would expect to see that 
the 8 h treated animals would have a transcriptional profile that appeared in this analysis to be “older” than the 
profiles of the other samples. In contrast, we observed that both the 0 mM and 400 mM ethanol treated animals 
had transcriptional profiles that appeared to be “younger” than the other treatment groups (Fig. 2). Because both 
the groups were strongly affected, this suggests that the common condition of 8 h of food deprivation caused a 
delay in normal transcriptional aging. Intriguingly, we noted that the transcriptomes of the animals treated with 
400 mM ethanol were significantly “older” than the transcriptomes of the 0 mM ethanol treated animals (Fig. 2), 
suggesting that the animals incubated with ethanol are able to use it to partially counteract the starvation-induced 
delay. This is evidence that they are using the ethanol as a calorie source, as has been previously reported34–37.

To associate gene expression with ethanol exposure over time, we used a linear model where we investigated 
the four replicates of each timepoint for gene expression differences between treatments (Supplemental Table 1). 
Differential gene expression increased over exposure time (Fig. 3, Supplemental Table 3). We noticed that the 
majority of genes were only differentially expressed at one time point, suggesting that those genes have a time 
specific function upon ethanol exposure. We also observed gene expression differences between treatments that 
are more stable over time as some genes continue to be differentially expressed at multiple time points (Fig. 3, 
Supplemental Table 4). We used the differentially expressed genes (DEGs) per timepoint in a gene ontology 
enrichment analysis (Supplemental Table 5).

We sought to understand the dynamics of ethanol-induced differential gene expression over time. For this 
analysis, we excluded the 480-min timepoint because of the major effect of the food deprivation at this timepoint 
(Fig. 2). For the determination of the appropriate number of clusters we used the “elbow” method25. We applied 
k-means clustering and clustered 959 spots (representing 660 significant differentially expressed genes) into five 
distinct patterns (Fig. 4A, Supplemental Table 6). The first cluster contained genes that were downregulated over 
time in both the 0 mM and 400 mM ethanol exposed animals; these were likely to be due to effects of the food 
deprivation. The second, third, and fourth clusters consist of genes upregulated in the 400 mM ethanol treated 
animals but unchanged in the 0 mM treated animals. The fifth cluster contains genes that were unchanged over 

Figure 2.   Effect of ethanol exposure on transcriptional time, presented as relative age. The relative age was 
computed by transforming the predicted ages (in hours) into the standard normal distribution. There was no 
significant difference in the “age” of animals due to ethanol exposure or to the treatment at 0, 30, 60, or 120 min 
of treatment. Animals undergoing the treatment for 480 min were significantly transcriptionally “younger” 
than animals treated for shorter times, although they were chronically 6–8 h older than the animals treated 
for shorter times. This suggests that this broad transcriptional delay is due to the food deprivation during the 
treatment. Ethanol exposure modified this transcriptional delay, suggesting that the animals are able to use 
ethanol as a calorie source, counteracting the starvation-induced effects on transcription. (one tailed t-test 
p < 0.0001).
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time in the animals treated with 400 mM ethanol, but were upregulated over time in the 0 mM treated animals. 
We used these clusters in gene-enrichment analysis (Fig. 4B, Supplemental Table 7).

We asked if there were particular transcription factors that we could associate with ethanol-dependent gene 
regulation using a transcription factor binding site enrichment analysis. The cluster harboring genes that respond 
in the first 30 min to ethanol exposure was associated with the most transcription factor binding sites; these 
transcription factors include B0261.1, NHR-76, and SUP-37 (Fig. 4C). The enrichment of transcription factor 
binding sites is somewhat overlapping between the early response genes (Fig. 4A cluster 2) and genes that respond 
somewhat later (Fig. 4A cluster 3); among these are ELT-2, FOS-1, and NHR-102. However, we did find that 
there appears to be specificity to the ethanol-induced transcriptional regulation across time; we found that 40 of 
51 associated transcription factor binding sites are different between those two clusters.

We reasoned that among the genes that are regulated in response to ethanol exposure would be genes that 
had already been identified as having roles in acute ethanol response phenotypes. We compiled a list of 77 genes 
that had been confirmed by behavioral testing in our and others’ laboratories to affect ethanol response behaviors 
in C. elegans2,11,31,38–49 and compared this list with the set of genes regulated at 480 min of ethanol exposure. We 
found that 21 of these genes were regulated at 480 min. (Supplemental Table 8). We focused primarily on genes 
whose expression was decreased in the ethanol-treated condition, with the idea that this should minimize the 
confounding effect of the food deprivation. Food deprivation appears in this study to decrease general transcrip-
tion in the 0 mM treated animals but has less of an effect in 400 mM treated animals, which could lead to genes 
that are increased in the 400 mM exposure group incorrectly appearing to be regulated in response to ethanol.

Discussion
In this study, we examined the transcriptional response of adult C. elegans to ethanol exposures of 30, 60, 120, 
and 480 min, with the goal of fully characterizing the acute effects of ethanol on gene expression. We treated 
age-synchronized young adult animals with 0 mM and 400 mM exogenous ethanol. This concentration of etha-
nol causes substantial behavioral effects; it results in significant loss of coordination and slowing of locomotion, 
as well as depression of egg laying4–6,9. We have previously found that over the course of a 60-min exposure to 
ethanol, only approximately 1/12th of the exogenous concentration of ethanol accumulates in the tissue of worms; 
this concentration is well within the range found in humans during heavy drinking episodes50,51.

To understand the biological implications of ethanol exposure we looked at time specific differential gene 
expression as well as gene expression patterns over time.

Genes encoding serotonin signaling components are regulated in response to ethanol expo-
sure.  We found that different lengths of exposure to ethanol elicited distinct transcriptional profiles, and as 
expected, more genes were regulated at longer exposure times. Fewer than 100 genes were significantly regulated 
at 30 min and there were no overrepresented gene ontology categories, probably due to the small dataset. Inter-
estingly, at this early timepoint, we observed an ethanol-induced increase in expression of mod-1, which encodes 
a serotonin-gated chloride channel (effect = − 0.19, FDR = 4.37 * 10–2). Serotonin signaling is a mechanism by 
which animals can modulate behavior based on external stimuli. In worms, serotonin activated MOD-1 chan-
nels play roles in the enhanced slowing response when worms that have been deprived of food encounter a new 

Figure 3.   UpSet plot of the linear model. In the lower left corner, the total number of differentially expressed 
spots between 0 mM versus 400 mM ethanol exposed animals can be observed per time point (− log10(p) > 3.7). 
The dots, lines, and bars represent the overlap of differentially expressed spots between the various time-points. 
For example: at 480 min, 4230 spots are only differentially regulated between the two treatments; hence, 144 
spots are differentially regulated between 0 and 400 mM ethanol at both 120 min and 480 min of exposure.
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source of food52–54, and also in promoting a reduced exploration state called dwelling55,56; both are behavioral 
states that have reduced locomotion rates. It is interesting that a channel that is known to promote reduced loco-
motory states would be upregulated by exposure to ethanol at a concentration that depresses rates of locomotion; 
perhaps the pattern of mod-1 expression is distinct, such that serotonin is inhibiting inhibitory neurons in the 
case of 30-min ethanol exposure. Serotonin is also implicated in alcohol use disorder in humans, although its 
role is complex and not completely understood. A genetic polymorphism in the serotonin reuptake transporter 
that increases serotonin in the synapse is associated with alcohol dependence, suggesting that increasing sero-
tonin signaling promotes consumption57. This is consistent with the observation that people with alcohol use 
disorder have relatively greater expression of the serotonin biosynthetic enzyme tryptophan hydroxylase58. How-
ever, drugs that impact serotonin signaling have been shown to both increase and decrease ethanol drinking in 
different paradigms (reviewed in Marcinkiewcz et al. 201659), leading to the suggestion that particular serotonin 
pathways are associated with different aspects of alcohol use phenotypes. It is notable that we observe that among 
the, at least, four serotonin receptors in worms, only mod-1 was regulated at this timepoint, indicating that 
there is specificity in the ethanol responsiveness of this neurotransmitter pathway. We note that at the 480 min 
timepoint, there was downregulation of both the bas-1 (dopa decarboxylase) (effect = − 0.43, FDR = 2.06 * 10–4) 
and cat-1 (catecholamine symporter) (effect = − 0.19, FDR = 2.12 * 10–3) enzymes that are involved in regulating 
serotonin levels, suggesting that by this point, a global decrease in serotonin signaling is induced by ethanol.

Metabolic enzymes and transcriptional regulators are regulated during middle time points 
of ethanol exposure.  At 60 min of exposure, 220 genes were significantly regulated. As expected, over-
represented in this group are genes involved in alcohol metabolism (alcohol dehydrogenase activity). In addi-
tion, there was robust regulation of transcription factors; these are excellent candidate mediators of subsequent 
downstream expression changes, and suggest that by this time of exposure, a longer-term response to the effects 
of ethanol is evident. At 120 min of ethanol exposure, 379 genes were significantly regulated, and cytochrome 

Figure 4.   k-means clustering of differentially expressed genes. (A) differentially expressed genes clustered 
per expression pattern. Timepoints tested are on the x-axis and on the y-axis are the 959 microarray spots that 
represent differentially expressed genes (− log10(p) > 3.7). The differentially expressed genes were clustered 
in five groups by k-means clustering: (1) down-regulated over time, (2) early and strong up-regulation upon 
ethanol exposure, (3) late up-regulation upon ethanol exposure, (4) early and weak up-regulation upon ethanol 
exposure, and (5) unchanged in ethanol exposed animals, while increasing expression over time in the ethanol 
untreated animals (this can be interpreted as relatively down-regulated over time upon ethanol exposure). 
The colors represent the averaged expression over the four replicates per time and treatment combination (as 
log2 ratio with the mean). (B) Enrichment analysis of the subsequent k-clusters based on various annotations, 
including: GO-terms and KEGG pathways88. (C) Enrichment of transcription factor binding sites (TFBS) per 
K-means cluster. Fold enrichment is shown when the enrichment for the TFBS was significant (FDR < 0.05). The 
figure was created using R (version 3.5.3 × 64; https://​cran.r-​proje​ct.​org/) and the ggplot2 package (version 3.3.3; 
https://​ggplo​t2.​tidyv​erse.​org/).

https://cran.r-project.org/
https://ggplot2.tidyverse.org/
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P450 family members are overrepresented in the gene set. Cytochrome P450s are metabolic enzymes and are 
induced in many systems in response to drug treatments, including alcohol60.

Eight hours of ethanol exposure causes regulation of genes involved in neuronal function 
and genes encoding direct molecular targets of ethanol.  At eight hours of ethanol exposure, we 
observed the largest number of and most diverse changes in gene expression; we found significant changes in 
expression of 2938 genes. There is a large effect of the experimental treatment at this timepoint independent 
of the ethanol concentration. We interpret this observation as the transcriptional response to food depriva-
tion, which is considerably, although not completely, ameliorated by the presence of ethanol. This somewhat 
confounds the interpretation of the biological significance of the differentially expressed genes that are due to 
ethanol at this timepoint, but because our overall goal with this work is to identify the long-lasting adaptive 
changes that occur upon exposure to ethanol, we examined the biological actions of DEGs at this timepoint. We 
paid particular attention to genes whose expression was down in the ethanol-treated animals relative to the non-
ethanol treated animals, because these may be less likely to reflect the potential moderating effect of ethanol on 
starvation-induced global down regulation of transcription.

We found that among the overrepresented classes of genes were those involved in locomotory behavior and 
synaptic transmission. For example, the genes encoding the synaptic active zone protein, UNC-13 (effect = − 0.56, 
FDR = 1.41 * 10–3), and its binding partner, UNC-10 (effect = − 0.68, FDR = 5.42 * 10–3) were both downregulated 
in ethanol treated animals. A mouse homolog of UNC-13, Munc13-1, has been demonstrated to be a direct 
molecular target of ethanol61. In Drosophila, reducing the levels of the unc-13 homolog Dunc13 generates resist-
ance to the depressing effects of ethanol on synaptic transmission62.

Genes encoding several components of the GABA signaling pathway are also regulated, including unc-
25 (glutamate decarboxylase) (effect = − 0.59, FDR = 1.41 * 10–4), unc-47 (GABA transporter) (effect = − 0.72, 
FDR = 2.04 * 10–4), and unc-49 (GABA receptor) (effect = − 0.54, FDR = 9.61 * 10–4), all of which were down-
regulated with 8 h of ethanol exposure. The mammalian GABAA receptor is a well-described direct target of 
ethanol, and ethanol’s action as a positive allosteric modulator of GABAA receptors is an important component 
of the intoxicating effects of ethanol. The GABA system plays important roles in both acute and chronic con-
sumption of ethanol63. Our observation that the GABA system is regulated with exposure to ethanol is consistent 
with an extensive literature in mammalian brains revealing that there is a complex manipulation of expression 
of GABA signaling components with ethanol treatments (reviewed in Roberto and Varodayan, 2017)64. This 
suggests that, like mammals, worms use transcriptional regulation of GABA system components to respond to 
ethanol exposure.

We and others have previously demonstrated that the BK potassium channel SLO-1 is a direct target of etha-
nol in worms and mammals4,65,66 and, in worms, is a major contributor to the depressive effects of ethanol4. We 
found that expression of the BK encoding gene slo-1 was decreased with 8 h of ethanol exposure (effect = 1.11, 
FDR = 5.79 * 10–4). These data are consistent with the observation in rats that ethanol causes a rapid downregula-
tion of BK channel mRNA in supraoptic nucleus neurons67, and suggests a simple model in which downregula-
tion of slo-1 and other direct ethanol targets could decrease the depressing effects of ethanol and, as such, could 
contribute to the development of tolerance to ethanol.

Eight hours of ethanol exposure causes regulation of genes known to be involved in etha-
nol response behaviors.  We hypothesized that in addition to slo-1, some of the genes that are regulated 
in response to ethanol exposure would already have been identified as having roles in acute ethanol response 
phenotypes. We have previously demonstrated that regulation of lipid levels is profoundly important in the 
process of development of acute functional tolerance to ethanol (AFT)6,7,68. We found that the triacylglyceride 
lipase gene, lips-7 was downregulated at 8 h of ethanol exposure (effect = − 0.56, FDR = 9.06 * 10–4). lips-7 acts 
antagonistically to the development of AFT; lips-7 loss of function mutants have enhanced development of AFT6. 
This suggests that down-regulation of lips-7 transcription after extended exposure to ethanol may enhance the 
development of tolerance to ethanol.

In addition to triacylglycerides, the level of ω-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) also 
regulates the development of AFT. Depletion of EPA eliminates AFT, whereas supplementing additional dietary 
EPA enhances normal AFT in worms7, and in mice, altering EPA levels in diet modifies both acute ethanol 
responses and voluntary consumption68. The fat-1 gene encodes a desaturase that generates EPA from arachi-
donic acid, and we found that the expression of fat-1 was significantly increased after 8 h of ethanol exposure 
(effect = 0.25, FDR = 1.39 * 10–3). If this upregulation is a compensatory response to the effects of ethanol, then 
this suggests that increasing the amount of EPA may be an additional mechanism by which animals modify their 
systems to generate tolerance to extended ethanol exposure.

Eight hours of ethanol exposure causes regulation of genes involved in cilia function.  We were 
intrigued to observe that at 8 h of exposure, one of the most over-represented classes of DEGs included genes 
involved in cilia maintenance and function. In humans, there are significant effects of chronic ethanol exposure 
on cilia, and these effects underlie, at least in part, the profound dysfunction in lungs observed in many people 
who chronically abuse alcohol. Respiratory illness is an important cause of alcohol-related mortality; people 
with AUD are significantly more susceptible to serious pulmonary infections, as well as at higher risk of acute 
respiratory distress syndrome (ARDS), an often-fatal fluid buildup in the alveoli (reviewed in Simet and Sisson, 
2015)69. Alcohol Induced Ciliary Dysfunction (AICD) is one of the root causes of lung dysfunction because it 
disrupts the ability of the ciliated airways to move inhaled particles and pathogens out of the lungs. AICD is 
associated with the disruption of the regulation of cilia beating frequency, and this effect has been linked to the 
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outer dynein arm of lung cilia70,71. Notably, we found that the C. elegans ortholog of the human dynein heavy 
chain, che-3, was significantly downregulated after 8 h of ethanol exposure (effect = − 0.96, FDR = 1.10 * 10–4).

Recent work suggests that cilia dysfunction caused by alcohol may also underlie some of alcohol’s effects 
on the nervous system. Excess alcohol consumption is associated with a buildup of cerebral spinal fluid (CSF) 
resulting in hydrocephalus, which can cause pressure related brain damage72. Fetal alcohol exposure can cause 
hydrocephalus73–75, which can result in lasting consequences to the affected child. Al Omran et al. (2017) recently 
demonstrated that acute alcohol exposure in rat causes a decrease in the beating frequency of the ependymal cilia 
lining in the brain that are involved in moving CSF76. Our work raises the intriguing possibility that the regula-
tion of cilia gene expression may be a response to the inhibition of cilia function that occurs during extended 
ethanol exposure.

This study examined the effects of a time course that culminated in 8 h of exposure to 400 mM ethanol. There 
have been at least two other examinations of the transcriptomics effects of exposure to ethanol in C. elegans 
using quite different exposure conditions. Kwon et al. (2004)77 performed a microarray analysis at 15 min, 30 
min, and 6 h of exposure to a high 1.5 M concentration of ethanol (they found that this concentration is lethal 
after 6 h of exposure). Moreover, this study has only 2 or 1 replicates at 15 min and 30 min respectively, which 
may reduce the ability to eliminate false positives or detect more subtle expression changes. This study reported 
that the only biological category of genes whose expression increased in ethanol treatment was the heat shock 
protein family. Interestingly, in our study, several of these heat shock protein genes were not upregulated (in fact, 
we found that several were downregulated), suggesting that this heat shock response is characteristic of the very 
high concentration of ethanol used in the Kwon et al. study. Of the 230 genes identified in this study as being 
ethanol responsive, we found that 21 were similarly regulated in our study, suggesting that these are responding 
to the ethanol exposure regardless of the concentration of ethanol experienced but consistent with exposure 
time. Peltonen et al. (2013)78 performed an RNAseq analysis of a chronic developmental exposure to a lower 
ethanol concentration (200 mM). In this work, two analyses were performed; developing larvae were exposed to 
ethanol for 2 days throughout postembryonic development and were harvested before adulthood, and a second 
group were exposed for 7 days and harvested at approximately 4 days of adulthood. This group observed that 
approximately 1000 genes were regulated in response to ethanol over these long developmental times. Among the 
most overrepresented gene classes were those involved in cytochrome P450 drug metabolism. Our observation 
that the P450 enzymes were regulated in our studies suggests that this is a general ethanol response mechanism.

k‑means clustering.  An additional approach to understanding gene expression dynamics is to consider 
genes that are affected by the treatment in the same pattern across the samples because co-expression of genes 
can shed light on specific biological processes that are affected by treatment. We excluded the 8-h timepoint 
from this analysis to minimize the effect of starvation. We performed k-means clustering of the 959 spots that 
were significantly different in the 0-, 30-, 60-, and 120-min exposures and grouped them into 5 clusters, each 
of which had a distinct pattern over time. We performed an enrichment analysis for each cluster to see if there 
were processes and pathways that were overrepresented that might highlight important functions underlying the 
ethanol response over time79–81.

Cluster 1 contained genes that were down-regulated over time regardless of treatment; these are likely to 
reflect the transcriptional response to the food deprivation during the exposure, and are unlikely to be informa-
tive about the ethanol response. Cluster 2 consisted of genes that were upregulated in the early timepoints and 
were progressively more upregulated with longer exposures to ethanol. This cluster was enriched for pathways 
that are involved in glycosylation. Glycosylation pathways are important for posttranslational modifications82. 
Interestingly, alcohol consumption affects glycosylation levels83, and moderate alcohol consumption is associ-
ated with exacerbation of antithrombin deficiency in individuals with disorders of glycosylation84. In one study, 
in children diagnosed with fetal alcohol syndrome there were more incidents of alleles compromising function 
of N-glycosylation machinery, suggesting that decreasing function of N-glycosylation may increase prenatal 
sensitivity to the teratogenic effects of ethanol85.

Cluster 3 contained genes that were strongly upregulated at later timepoints during the ethanol exposure; this 
small cluster contained enzymes involved in drug metabolism. Genes in cluster 4 were weakly upregulated across 
the ethanol exposure timecourse; genes in this cluster are involved in multiple processes including retinol (vita-
min A) metabolism. There is a complicated relationship between retinols and ethanol; enzymes that metabolize 
ethanol appear to have an impact on retinol metabolism and homeostasis, and ethanol drinking dysregulates 
retinol metabolism; this has important negative health consequences in people with AUD (reviewed by Clugston 
and Blaner, 2012)86. In addition, alcohol induced dysregulation of retinol metabolism may contribute to the 
development of fetal alcohol syndrome87.

Cluster 5 consisted of genes whose expression was upregulated over time in animals not exposed to ethanol, 
presumably in response to the food deprivation during the assay. However, in animals exposed to ethanol, 
these genes were stably expressed, suggesting that ethanol suppressed the starvation-induced expression change. 
Among the over-represented classes were genes involved in neuronal function; one intriguing possibility is that 
these genes contribute to neuroadaptations to the food deprivation stress that are inhibited by ethanol.

In conclusion, we have identified ethanol exposure-induced transcriptional regulation of genes involved in 
pathways predicted by our previous work, including several direct targets of ethanol and genes involved in alcohol 
and lipid metabolism, as well as novel gene groups, including those involved in cilia function, glycosylation and 
retinol metabolism. Regulation of these genes in humans by ethanol exposure may have significant consequences 
for the long-term abuse of the drug and health-related consequences of alcohol consumption.
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