96 research outputs found

    The Late Quaternary tephrostratigraphy of annually laminated sediments from Meerfelder Maar, Germany

    Get PDF
    © 2015 Elsevier Ltd.The record of Late Quaternary environmental change within the sediments of Meerfelder Maar in the Eifel region of Germany is renowned for its high precision chronology, which is annually laminated throughout the Last Glacial to Interglacial transition (LGIT) and most of the Holocene. Two visible tephra layers are prominent within the floating varve chronology of Meerfelder Maar. An Early Holocene tephra layer, the Ulmener Maar Tephra (~11,000 varve years BP), provides a tie-line of the Meerfelder Maar record to the varved Holocene record of nearby Lake Holzmaar. The Laacher See Tephra provides another prominent time marker for the late Allerød, ~200 varve years before the transition into the Younger Dryas at 12,680 varve years BP. Further investigation has now shown that there are also 15 cryptotephra layers within the Meerfelder Maar LGIT-Holocene stratigraphy and these layers hold the potential to make direct comparisons between the Meerfelder Maar record and other palaeoenvironmental archives from across Europe and the North Atlantic. Most notable is the presence of the Vedde Ash, the most widespread Icelandic eruption known from the Late Quaternary, which occurred midway through the Younger Dryas. The Vedde Ash has also been found in the Greenland ice cores and can be used as an isochron around which the GICC05 and Meerfelder Maar annual chronologies can be compared. Near the base of the annual laminations in Meerfelder Maar a cryptotephra is found that correlates to the Neapolitan Yellow Tuff, erupted from Campi Flegrei in southern Italy, 1200km away. This is the furthest north that the Neapolitan Yellow Tuff has been found, highlighting its importance in the construction of a European-wide tephrostratigraphic framework. The co-location of cryptotephra layers from Italian, Icelandic and Eifel volcanic sources, within such a precise chronological record, makes Meerfelder Maar one of the most important tephrostratotype records for continental Europe during the Last Glacial to Interglacial transition

    Hydrological evidence for a North Atlantic oscillation during the Little Ice Age outside its range observed since 1850.

    Get PDF
    An annual-resolved precipitation reconstruction for the last 800 yr in Southern Spain has been performed using stable carbon isotope (δ13C) of Pinus nigra tree rings. The reconstruction exhibits high- to low-frequency variability and distinguishes a Little Ice Age (LIA, AD 13501850) characterized by lower averaged rainfall than both in the transition from the Medieval Climate Anomaly to the LIA and in the 20th century. The driest conditions are recorded during the Maunder solar Minimum (mid 17thearly 18th centuries), in good agreement with the Spanish documentary archive. Similar linkage between solar activity (maximum/minimum) and precipitation (increase/decrease) is observed throughout the entire LIA. Additionally, the relationship between the hydrological pattern in the Iberian Peninsula and Morocco during the LIA suggests different spatial distribution of precipitation in the south-eastern sector of the North Atlantic region such as it is known currently. Whereas in the instrumental record the precipitation evolves similarly in both regions and opposite to the North Atlantic oscillation (NAO) index, the coldest periods of the LIA shows a contrasting pattern with drier conditions in the South of Spain and wetter in Northern Africa. We suggest an extreme negative NAO conditions, accompanied by a southward excursion of the winter rainfall band beyond that observed in the last century, can explain this contrast. The sustained NAO conditions could have been triggered by solar minima and higher volcanic activity during the LIA

    Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach

    Get PDF
    A combination of marine (Alboran Sea cores, ODP 976 and TTR 300 G) and terrestrial (Zoñar Lake, Andalucia, Spain) geochemical proxies provides a high-resolution reconstruction of climate variability and human influence in the southwestern Mediterranean region for the last 4000 years at inter-centennial resolution. Proxies respond to changes in precipitation rather than temperature alone. Our combined terrestrial and marine archive documents a succession of dry and wet periods coherent with the North Atlantic climate signal. A dry period occurred prior to 2.7 cal ka BP – synchronously to the global aridity crisis of the third-millennium BC – and during the Medieval Climate Anomaly (1.4–0.7 cal ka BP). Wetter conditions prevailed from 2.7 to 1.4 cal ka BP. Hydrological signatures during the Little Ice Age are highly variable but consistent with more humidity than the Medieval Climate Anomaly. Additionally, Pb anomalies in sediments at the end of the Bronze Age suggest anthropogenic pollution earlier than the Roman Empire development in the Iberian Peninsula. The Late Holocene climate evolution of the in the study area confirms the see-saw pattern between the eastern and western Mediterranean regions and the higher influence of the North Atlantic dynamics in the western Mediterranean

    Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach

    Get PDF
    10 páginas, 5 figuras, 1 tabla.A combination of marine (Alboran Sea cores, ODP 976 and TTR 300 G) and terrestrial (Zoñar Lake, Andalucia, Spain) geochemical proxies provides a high-resolution reconstruction of climate variability and human influence in the southwestern Mediterranean region for the last 4000 years at inter-centennial resolution. Proxies respond to changes in precipitation rather than temperature alone. Our combined terrestrial and marine archive documents a succession of dry and wet periods coherent with the North Atlantic climate signal. A dry period occurred prior to 2.7 cal ka BP – synchronously to the global aridity crisis of the third-millennium BC – and during the Medieval Climate Anomaly (1.4–0.7 cal ka BP). Wetter conditions prevailed from 2.7 to 1.4 cal ka BP. Hydrological signatures during the Little Ice Age are highly variable but consistent with more humidity than the Medieval Climate Anomaly. Additionally, Pb anomalies in sediments at the end of the Bronze Age suggest anthropogenic pollution earlier than the Roman Empire development in the Iberian Peninsula. The Late Holocene climate evolution of the in the study area confirms the see-saw pattern between the eastern and western Mediterranean regions and the higher influence of the North Atlantic dynamics in the western Mediterranean.Projects LIMNOCLIBER REN 2003-09130- C02-02, CALIBRE CGL 2006-13327-c04/CLI, CGL-2006-2956- BOS, CGL2009-07603 (MICINN), 200800050084447 (MARM) and RNM 05212 (Junta de Andalucía), we also thanks Projects GRACCIE (CSD2007- 00067) and CTM2009-07715 (MICINN), Research Group 0179 (Junta de Andalucía) and the Training- Through-Research Programme.Peer reviewe

    Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16′N, 4°59′W, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500–11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600–8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700–4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650–2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and Technology (CICYT), the Spanish National Parks agency, the European Commission, the Spanish Ministry of Science, and the European Social Fund

    Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16′N, 4°59′W, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500–11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600–8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700–4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650–2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and Technology (CICYT), the Spanish National Parks agency, the European Commission, the Spanish Ministry of Science, and the European Social Fund

    The miniJPAS survey: Identification and characterization of the emission line galaxies down to z<0.35z < 0.35 in the AEGIS field

    Get PDF
    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is expected to map thousands of square degrees of the northern sky with 56 narrowband filters in the upcoming years. This will make J-PAS a very competitive and unbiased emission line survey compared to spectroscopic or narrowband surveys with fewer filters. The miniJPAS survey covered 1 deg2^2, and it used the same photometric system as J-PAS, but the observations were carried out with the pathfinder J-PAS camera. In this work, we identify and characterize the sample of emission line galaxies (ELGs) from miniJPAS with a redshift lower than 0.350.35. Using a method based on artificial neural networks, we detect the ELG population and measure the equivalent width and flux of the HαH\alpha, HβH\beta, [OIII], and [NII] emission lines. We explore the ionization mechanism using the diagrams [OIII]/Hβ\beta versus [NII]/Hα\alpha (BPT) and EW(Hα\alpha) versus [NII]/Hα\alpha (WHAN). We identify 1787 ELGs (8383%) from the parent sample (2154 galaxies) in the AEGIS field. For the galaxies with reliable EW values that can be placed in the WHAN diagram (2000 galaxies in total), we obtained that 72.8±0.472.8 \pm 0.4%, 17.7±0.417.7 \pm 0.4% , and 9.4±0.29.4 \pm 0.2% are star-forming (SF), active galactic nucleus (Seyfert), and quiescent galaxies, respectively. Based on the flux of HαH\alpha we find that the star formation main sequence is described as log\log SFR [Myr1]=0.900.02+0.02logM[M]8.850.20+0.19[M_\mathrm{\odot} \mathrm{yr}^{-1}] = 0.90^{+ 0.02}_{-0.02} \log M_{\star} [M_\mathrm{\odot}] -8.85^{+ 0.19}_{-0.20} and has an intrinsic scatter of 0.200.01+0.010.20^{+ 0.01}_{-0.01}. The cosmic evolution of the SFR density (ρSFR\rho_{\text{SFR}}) is derived at three redshift bins: 0<z0.150 < z \leq 0.15, 0.15<z0.250.15 < z \leq 0.25, and 0.25<z0.350.25 < z \leq 0.35, which agrees with previous results that were based on measurements of the HαH\alpha emission line.Comment: 22 pages, 19 figure

    Confirmation of an He I evaporating atmosphere around the 650-Myr-old sub-Neptune HD235088 b (TOI-1430 b) with CARMENES

    Get PDF
    HD235088 (TOI-1430) is a young star known to host a sub-Neptune-sized planet candidate. We validated the planetary nature of HD235088 b with multiband photometry, refined its planetary parameters, and obtained a new age estimate of the host star, placing it at 600-800 Myr. Previous spectroscopic observations of a single transit detected an excess absorption of He I coincident in time with the planet candidate transit. Here, we confirm the presence of He I in the atmosphere of HD235088 b with one transit observed with CARMENES. We also detected hints of variability in the strength of the helium signal, with an absorption of -0.91±\pm0.11%, which is slightly deeper (2σ\sigma) than the previous measurement. Furthermore, we simulated the He I signal with a spherically symmetric 1D hydrodynamic model, finding that the upper atmosphere of HD235088 b escapes hydrodynamically with a significant mass loss rate of (1.5-5) ×\times1010^{10}g s1^{-1}, in a relatively cold outflow, with TT=3125±\pm375 K, in the photon-limited escape regime. HD235088 b (RpR_{p} = 2.045±\pm0.075 R_{\oplus}) is the smallest planet found to date with a solid atmospheric detection - not just of He I but any other atom or molecule. This positions it a benchmark planet for further analyses of evolving young sub-Neptune atmospheres.Comment: Accepted for publication in A&A. 17 pages, 18 figure
    corecore