14 research outputs found

    Dilepton production in pp and CC collisions with HADES

    Get PDF
    Dilepton production has been measured with HADES, the "High Acceptance DiElectron Spectrometer". In pp collisions at 2.2GeV kinetic beam energy, exclusive eta production and the Dalitz decay eta -> gamma e+e- has been reconstructed. The electromagnetic form factor is well in agreement with existing data. In addition, an inclusive e+e- spectrum from the C+C reaction at 2AGeV is presented and compared with a thermal model.Comment: 11 pages, 3 figures, proceedings of the IVth International Conference on Quarks and Nuclear Physics, Madrid, June 5th-10th, submitted to Eur.Phys.J.

    Performance of aquatic plant species for phytoremediation of arsenic-contaminated water

    Get PDF
    This study investigates the effectiveness of aquatic macrophyte and microphyte for phytoremediation of water bodies contaminated with high arsenic concentration. Water hyacinth (Eichhornia crassipes) and two algae (Chlorodesmis sp. and Cladophora sp.) found near arsenic-enriched water bodies were used to determine their tolerance toward arsenic and their effectiveness to uptake arsenic thereby reducing organic pollution in arsenic-enriched wastewater of different concentrations. Parameters like pH, chemical oxygen demand (COD), and arsenic concentration were monitored. The pH of wastewater during the course of phytoremediation remained constant in the range of 7.3–8.4, whereas COD reduced by 50–65 % in a period of 15 days. Cladophora sp. was found to survive up to an arsenic concentration of 6 mg/L, whereas water hyacinth and Chlorodesmis sp. could survive up to arsenic concentrations of 2 and 4 mg/L, respectively. It was also found that during a retention period of 10 days under ambient temperature conditions, Cladophora sp. could bring down arsenic concentration from 6 to <0.1 mg/L, Chlorodesmis sp. was able to reduce arsenic by 40−50 %; whereas, water hyacinth could reduce arsenic by only 20 %. Cladophora sp. is thus suitable for co-treatment of sewage and arsenic-enriched brine in an algal pond having a retention time of 10 days. The identified plant species provides a simple and cost-effective method for application in rural areas affected with arsenic problem. The treated water can be used for irrigation

    A study of the optical absorption in CdTe by photoacoustic

    No full text
    Abstract We show that the Photo-Acoustic Spectroscopy (PAS) is an useful alternative method for the determination of the optical-absorption coefficient of CdTe thin films, in the spectral region near to the fundamental absorption edge, ranging from 1.0 eV to 2.4 eV, using an open cell in the transmission configuration. We applied this method to the optical characterization of CdTe layers for several values of their thickness. These CdTe samples were deposited by closed-space vapor transport (CSVT) technique under different growth conditions

    The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: 1000 multi-tracer mock catalogues with redshift evolution and systematics for galaxies and quasars of the final data release

    No full text
    We produce 1000 realizations of synthetic clustering catalogues for each type of the tracers used for the baryon acoustic oscillation and redshift space distortion analysis of the Sloan Digital Sky Surveys-iv extended Baryon Oscillation Spectroscopic Survey final data release (eBOSS DR16), covering the redshift range from 0.6 to 2.2, to provide reliable estimates of covariance matrices and test the robustness of the analysis pipeline with respect to observational systematics. By extending the Zel’dovich approximation density field with an effective tracer bias model calibrated with the clustering measurements from the observational data, we accurately reproduce the two- and three-point clustering statistics of the eBOSS DR16 tracers, including their cross-correlations in redshift space with very low computational costs. In addition, we include the gravitational evolution of structures and sample selection biases at different redshifts, as well as various photometric and spectroscopic systematic effects. The agreements on the auto-clustering statistics between the data and mocks are generally within 1σ variances inferred from the mocks, for scales down to a few h−1Mpc in configuration space, and up to 0.3hMpc−1 in Fourier space. For the cross correlations between different tracers, the same level of consistency presents in configuration space, while there are only discrepancies in Fourier space for scales above 0.15hMpc−1⁠. The accurate reproduction of the data clustering statistics permits reliable covariances for multi-tracer analysis

    The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: N-body mock challenge for galaxy clustering measurements

    No full text
    We develop a series of N-body data challenges, functional to the final analysis of the extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 (DR16) galaxy sample. The challenges are primarily based on high-fidelity catalogues constructed from the Outer Rim simulation – a large box size realization (3h−1Gpc) characterized by an unprecedented combination of volume and mass resolution, down to 1.85 × 109h−1M⊙. We generate synthetic galaxy mocks by populating Outer Rim haloes with a variety of halo occupation distribution (HOD) schemes of increasing complexity, spanning different redshift intervals. We then assess the performance of three complementary redshift space distortion (RSD) models in configuration and Fourier space, adopted for the analysis of the complete DR16 eBOSS sample of Luminous Red Galaxies (LRGs). We find all the methods mutually consistent, with comparable systematic errors on the Alcock–Paczynski parameters and the growth of structure, and robust to different HOD prescriptions – thus validating the robustness of the models and the pipelines used for the baryon acoustic oscillation (BAO) and full shape clustering analysis. In particular, all the techniques are able to recover α∄ and α⊄ to within 0.9 per cent⁠, and fσ8 to within 1.5 per cent⁠. As a by-product of our work, we are also able to gain interesting insights on the galaxy–halo connection. Our study is relevant for the final eBOSS DR16 ‘consensus cosmology’, as the systematic error budget is informed by testing the results of analyses against these high-resolution mocks. In addition, it is also useful for future large-volume surveys, since similar mock-making techniques and systematic corrections can be readily extended to model for instance the Dark Energy Spectroscopic Instrument (DESI) galaxy sample
    corecore