51 research outputs found

    Effect of allopurinol in addition to hypothermia treatment in neonates for hypoxic-ischemic brain injury on neurocognitive outcome (ALBINO): Study protocol of a blinded randomized placebo-controlled parallel group multicenter trial for superiority (phase III)

    Get PDF
    Background: Perinatal asphyxia and resulting hypoxic-ischemic encephalopathy is a major cause of death and long-term disability in term born neonates. Up to 20,000 infants each year are affected by HIE in Europe and even more in regions with lower level of perinatal care. The only established therapy to improve outcome in these infants is therapeutic hypothermia. Allopurinol is a xanthine oxidase inhibitor that reduces the production of oxygen radicals as superoxide, which contributes to secondary energy failure and apoptosis in neurons and glial cells after reperfusion of hypoxic brain tissue and may further improve outcome if administered in addition to therapeutic hypothermia. Methods: This study on the effects of ALlopurinol in addition to hypothermia treatment for hypoxic-ischemic Brain Injury on Neurocognitive Outcome (ALBINO), is a European double-blinded randomized placebo-controlled parallel group multicenter trial (Phase III) to evaluate the effect of postnatal allopurinol administered in addition to standard of care (including therapeutic hypothermia if indicated) on the incidence of death and severe neurodevelopmental impairment at 24 months of age in newborns with perinatal hypoxic-ischemic insult and signs of potentially evolving encephalopathy. Allopurinol or placebo will be given in addition to therapeutic hypothermia (where indicated) to infants with a gestational age 65 36 weeks and a birth weight 65 2500 g, with severe perinatal asphyxia and potentially evolving encephalopathy. The primary endpoint of this study will be death or severe neurodevelopmental impairment versus survival without severe neurodevelopmental impairment at the age of two years. Effects on brain injury by magnetic resonance imaging and cerebral ultrasound, electric brain activity, concentrations of peroxidation products and S100B, will also be studied along with effects on heart function and pharmacokinetics of allopurinol after iv-infusion. Discussion: This trial will provide data to assess the efficacy and safety of early postnatal allopurinol in term infants with evolving hypoxic-ischemic encephalopathy. If proven efficacious and safe, allopurinol could become part of a neuroprotective pharmacological treatment strategy in addition to therapeutic hypothermia in children with perinatal asphyxia. Trial registration: NCT03162653, www.ClinicalTrials.gov, May 22, 2017

    MSI-induced frameshift mutations are ideal tumor-associated antigenes

    No full text

    Early neonatal death caused by severe euglycemic ketoacidosis in a pregnant woman with type 1 Diabetes mellitus

    Full text link
    Diabetic ketoacidosis (DKA) is one of the most serious acute complications of diabetes mellitus and is characterized by uncontrolled hyperglycemia, metabolic acidosis and ketosis. The reported incidence of Diabetes mellitus in pregnancy ranges from 6 to 7% with 90% occurring among women affected by gestational diabetes mellitus (GDM) (1). The overall incidence of DKA occurrence during pregnancy is difficult to ascertain but some articles have reported an incidence between 1 and 3% (2, 3). Although it is a rare condition, DKA in pregnancy is an urgent complication which can compromise both fetus and mother

    Rehabilitative Einrichtungen

    No full text

    Kryokonservierung und Xenotransplantation kolorektaler Karzinome

    No full text

    Progressive loss of a glial potassium channel (KCNJ10) in the spinal cord of the SOD1 (G93A) transgenic mouse model of amyotrophic lateral sclerosis

    No full text
    Transgenic mice expressing the superoxide dismutase G93A mutation (SOD1(G93A)) were used to investigate the role of glial inwardly rectifying K+ (Kir)4.1 channels, which buffer extracellular K+ increases in response to neuronal excitation. A progressive decrease in Kir4.1 immunoreactivity was observed predominantly in the ventral horn of SOD1(G93A) mutants. Immunoblotting of spinal cord extracts mirrored these changes by showing a loss of Kir4.1 channels from presymptomatic stages onwards. Kir4.1 channels were found to be expressed in the spinal cord grey matter, targetting astrocytes and clustering around capillaries, supporting their role in clearance of extracellular K+. To understand the functional implications of extracellular K+ increases, we challenged the NSC34 motor neurone cell line with increasing extracellular K+ concentrations. Exposure to high extracellular K+ induced progressive motor neurone cell death. We suggest that loss of Kir4.1 impairs perineural K+ homeostasis and may contribute to motor neurone degeneration in SOD1(G93A) mutants by K+ excitotoxic mechanisms
    corecore