249 research outputs found

    Analysis of dynamic mechanical response in torsion

    No full text
    We investigate the dynamic response of industrial rubbers (styrene-butadiene random copolymers, SBR) in torsion and compare against common small amplitude oscillatory shear measurements by using a torsion rectangular fixture, a modified torsion cylindrical fixture, and a conventional parallel plate fixture, respectively, in two different rheometers (ARES 2kFRTN1 from TA Instruments, USA and MCR 702 from Anton Paar-Physica, Austria). The effects of specimen geometry (length-to-width aspect ratio) on storage modulus and level of clamping are investigated. For cylindrical specimens undergoing torsional deformation, we find that geometry and clamping barely affect the shear moduli, and the measurements essentially coincide with those using parallel plates. In contrast, a clear dependence of the storage modulus on the aspect ratio is detected for specimens having rectangular cross section. The empirical correction used routinely in this test is based on geometrical factors and can account for clamping effects, but works only for aspect ratios above a threshold value of 1.4. By employing a finite element analysis, we perform a parametric study of the effects of the aspect ratio in the cross-sectional stress distribution and the linear viscoelastic torsional response. We propose a new, improved empirical equation for obtaining accurate moduli values in torsion at different aspect ratios, whose general validity is demonstrated in both rheometers. These results should provide a guideline for measurements with different elastomers, for which comparison with dynamic oscillatory tests may not be possible due to wall slip issues

    Physicians’ misperceived cardiovascular risk and therapeutic inertia as determinants of low LDL-cholesterol targets achievement in diabetes

    Get PDF
    Background: Greater efforts are needed to overcome the worldwide reported low achievement of LDL-c targets. This survey aimed to dissect whether and how the physician-based evaluation of patients with diabetes is associated with the achievement of LDL-c targets. Methods: This cross-sectional self-reported survey interviewed physicians working in 67 outpatient services in Italy, collecting records on 2844 patients with diabetes. Each physician reported a median of 47 records (IQR 42–49) and, for each of them, the physician specified its perceived cardiovascular risk, LDL-c targets, and the suggested refinement in lipid-lowering-treatment (LLT). These physician-based evaluations were then compared to recommendations from EAS/EASD guidelines. Results: Collected records were mostly from patients with type 2 diabetes (94%), at very-high (72%) or high-cardiovascular risk (27%). Physician-based assessments of cardiovascular risk and of LDL-c targets, as compared to guidelines recommendation, were misclassified in 34.7% of the records. The misperceived assessment was significantly higher among females and those on primary prevention and was associated with 67% lower odds of achieving guidelines-recommended LDL-c targets (OR 0.33, p < 0.0001). Peripheral artery disease, target organ damage and LLT-initiated by primary-care-physicians were all factors associated with therapeutic-inertia (i.e., lower than expected probability of receiving high-intensity LLT). Physician-suggested LLT refinement was inadequate in 24% of overall records and increased to 38% among subjects on primary prevention and with misclassified cardiovascular risk. Conclusions: This survey highlights the need to improve the physicians’ misperceived cardiovascular risk and therapeutic inertia in patients with diabetes to successfully implement guidelines recommendations into everyday clinical practice

    Fourier Transform Rheology of Dilute Immiscible Polymer Blends: A Novel Procedure To Probe Blend Morphology

    No full text
    Morphological characterization of polymer blends is important for tailoring final properties of plastic products based on these systems. A novel technique to estimate the characteristic dimension and size distribution of a polymer blend is proposed and tested. The procedure is based on Fourier transform rheology (FTR) and large-amplitude oscillatory shear experiments and exploits their sensitivity to microstructural properties. The inference protocol requires that the experimental data are analyzed with a model capable of describing the blend dynamics. This novel technique is applicable to immiscible polymer blends of practical industrial interest. The procedure is successfully tested on a model system (an immiscible polymer blend of PDMS in PIB) by treating the polymer blends with the Maffettone-Minale model coupled with the Batchelor theory

    Gas entrainment in intermeshing co-rotating twin-screw extruders

    No full text
    • …
    corecore