3,541 research outputs found
Scattering processes could distinguish Majorana from Dirac neutrinos
It is well known that Majorana neutrinos have a pure axial neutral current
interaction while Dirac neutrinos have the standard vector-axial interaction.
In spite of this crucial difference, usually Dirac neutrino processes differ
from Majorana processes by a term proportional to the neutrino mass, resulting
in almost unmeasurable observations of this difference. In the present work we
show that once the neutrino polarization evolution is considered, there are
clear differences between Dirac and Majorana scattering on electrons. The
change of polarization can be achieved in astrophysical environments with
strong magnetic fields. Furthermore, we show that in the case of unpolarized
neutrino scattering onto polarized electrons, this difference can be relevant
even for large values of the neutrino energy.Comment: 12 pages, 5 figure
The scalar sector in the Myers-Pospelov model
We construct a perturbative expansion of the scalar sector in the
Myers-Pospelov model, up to second order in the Lorentz violating parameter and
taking into account its higher-order time derivative character. This expansion
allows us to construct an hermitian positive-definite Hamiltonian which
provides a correct basis for quantization. Demanding that the modified normal
frequencies remain real requires the introduction of an upper bound in the
magnitude |k| of the momentum, which is a manifestation of the effective
character of the model. The free scalar propagator, including the corresponding
modified dispersion relations, is also calculated to the given order, thus
providing the starting point to consider radiative corrections when
interactions are introduced.Comment: Published in AIP Conf.Proc.977:214-223,200
High resolution observations of the outer disk around T Cha: the view from ALMA
T Cha is a young star surrounded by a transitional disk with signatures of
planet formation. We have obtained high-resolution and high-sensitivity ALMA
observations of T Cha in the --, --, and
-- emission lines to reveal the spatial distribution of the
gaseous disk around the star. In order to study the dust within the disk we
have also obtained continuum images at 850m from the line-free channels.
We have spatially resolved the outer disk around T Cha. Using the CO(3-2)
emission we derive a radius of 230 AU. We also report the detection of
the CO(3-2) and the CS(7-8) molecular emissions, which show smaller
radii than the CO(3-2) detection. The continuum observations at 850m allow
the spatial resolution of the dusty disk, which shows two emission bumps
separated by 40AU, consistent with the presence of a dust gap in the
inner regions of the disk, and an outer radius of 80AU. Therefore, T Cha
is surrounded by a compact dusty disk and a larger and more diffuse gaseous
disk, as previously observed in other young stars. The continuum intensity
profiles are different at both sides of the disk suggesting possible dust
asymmetries. We derive an inclination of i(deg)=675, and a position angle
of PA (deg)= 1136, for both the gas and dust disks. The comparison of the
ALMA data with radiative transfer models shows that the gas and dust components
can only be simultaneously reproduced when we include a tapered edge
prescription for the surface density profile. The best model suggests that most
of the disk mass is placed within a radius of 50AU. Finally, we derive a
dynamical mass for the central object of =1.50.2M,
comparable to the one estimated with evolutionary models for an age of
10Myr.Comment: 5 pages, 5 figures, accepted for publication in A&A Letter
Limits to differences in active and passive charges
We explore consequences of a hypothetical difference between active charges,
which generate electric fields, and passive charges, which respond to them. A
confrontation to experiments using atoms, molecules, or macroscopic matter
yields limits on their fractional difference at levels down to 10^-21, which at
the same time corresponds to an experimental confirmation of Newtons third law.Comment: 6 pages Revtex. To appear in Phys. Rev.
MACHe3, a prototype for non-baryonic dark matter search: KeV event detection and multicell correlation
Superfluid He3 at ultra-low temperatures (100 microKelvins) is a sensitive
medium for the bolometric detection of particles. MACHe3 (MAtrix of Cells of
Helium 3) is a project for non-baryonic dark matter search using He3 as a
sensitive medium. Simulations made on a high granularity detector show a very
good rejection to background signals. A multicell prototype including 3
bolometers has been developed to allow correlations between the cells for
background event discrimination. One of the cells contains a low activity Co57
source providing conversion electrons of 7.3 and 13.6 keV to confirm the
detection of low energy events. First results on the multicell prototype are
presented. A detection threshold of 1 keV has been achieved. The detection of
low energy conversion electrons coming from the Co57 source is highlighted as
well as the cosmic muon spectrum measurement. The possibility to reject
background events by using the correlation among the cells is demonstrated from
the simultaneous detection of muons in different cells
- …