332 research outputs found

    Beyond ambivalence: Locating the whiteness of security

    Get PDF

    Single-cell delineation of lineage and genetic identity in the mouse brain

    Get PDF
    During neurogenesis, mitotic progenitor cells lining the ventricles ofthe embryonic mouse brain undergo their final rounds of cell division, giving rise to a wide spectrum of postmitotic neurons and glia(1,2). The link between developmental lineage and cell-type diversity remains an open question. Here we used massively parallel tagging of progenitors to track clonal relationships and transcriptomic signatures during mouse forebrain development. We quantified clonal divergence and convergence across all major cell classes postnatally, and found diverse types of GABAergic neuron that share a common lineage. Divergence of GABAergic clones occurred during embryogenesis upon cell-cycle exit, suggesting that differentiation into subtypes is initiated as a lineage-dependent process at the progenitor cell level

    Inhibition of Hedgehog Signaling Decreases Proliferation and Clonogenicity of Human Mesenchymal Stem Cells

    Get PDF
    Human mesenchymal stem cells (hMSC) have the ability to differentiate into osteoblasts, adipocytes and chondrocytes. We have previously shown that hMSC were endowed with a basal level of Hedgehog signaling that decreased after differentiation of these cells. Since hMSC differentiation is associated with growth-arrest we investigated the function of Hh signaling on cell proliferation. Here, we show that inhibition of Hh signaling, using the classical inhibitor cyclopamine, or a siRNA directed against Gli-2, leads to a decrease in hMSC proliferation. This phenomenon is not linked to apoptosis but to a block of the cells in the G0/G1 phases of the cell cycle. At the molecular level, it is associated with an increase in the active form of pRB, and a decrease in cyclin A expression and MAP kinase phosphorylation. Inhibition of Hh signaling is also associated with a decrease in the ability of the cells to form clones. By contrast, inhibition of Hh signaling during hMSC proliferation does not affect their ability to differentiate. This study demonstrates that hMSC are endowed with a basal Hedgehog signaling activity that is necessary for efficient proliferation and clonogenicity of hMSC. This observation unravels an unexpected new function for Hedgehog signaling in the regulation of human mesenchymal stem cells and highlights the critical function of this morphogen in hMSC biology

    Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice

    Get PDF
    The transcription factor Pax6 has been reported to specify neural progenitor cell fates during development and maintain neuronal commitments in the adult. The spatiotemporal patterns of Pax6 expression were examined in sagittal and horizontal sections of the embryonic, postnatal, and adult brains using immunohistochemistry and double immunolabeling. The proportion of Pax6-immunopositive cells in various parts of the adult brain was estimated using the isotropic fractionator methodology. It was shown that at embryonic day 11 (E11) Pax6 was robustly expressed in the proliferative neuroepithelia of the ventricular zone in the forebrain and hindbrain, and in the floor and the mesencephalic reticular formation (mRt) in the midbrain. At E12, its expression emerged in the nucleus of the lateral lemniscus in the rhombencephalon and disappeared from the floor of the midbrain. As neurodevelopment proceeds, the expression pattern of Pax6 changes from the mitotic germinal zone in the ventricular zone to become extensively distributed in cell groups in the forebrain and hindbrain, and the expression persisted in the mRt. The majority of Pax6-positive cell groups were maintained until adult life, but the intensity of Pax6 expression became much weaker. Pax6 expression was maintained in the mitotic subventricular zone in the adult brain, but not in the germinal region dentate gyrus in the adult hippocampus.There was no obvious colocalization of Pax6 and NeuN during embryonic development, suggesting Pax6 is found primarily in developing progenitor cells. In the adult brain, however, Pax6 maintains neuronal features of some subtypes of neurons, as indicated by 97.1% of Pax6-positive cells co-expressing NeuN in the cerebellum, 40.7% in the olfactory bulb, 38.3% in the cerebrum, and 73.9% in the remaining brain except the hippocampus. Differentiated tyrosine hydroxylase (TH) neurons were observed in the floor of the E11 midbrain where Pax6 was also expressed, but no obvious colocaliztion of TH and Pax6 was detected. No Pax6 expression was observed in TH-expressing areas in the midbrain at E12, E14, and postnatal day 1. These results support the notion that Pax6 plays pivotal roles in specifying neural progenitor cell commitments and maintaining certain mature neuronal fates

    A Balance of BMP and Notch Activity Regulates Neurogenesis and Olfactory Nerve Formation

    Get PDF
    Although the function of the adult olfactory system has been thoroughly studied, the molecular mechanisms regulating the initial formation of the olfactory nerve, the first cranial nerve, remain poorly defined. Here, we provide evidence that both modulated Notch and bone morphogenetic protein (BMP) signaling affect the generation of neurons in the olfactory epithelium and reduce the number of migratory neurons, so called epithelioid cells. We show that this reduction of epithelial and migratory neurons is followed by a subsequent failure or complete absence of olfactory nerve formation. These data provide new insights into the early generation of neurons in the olfactory epithelium and the initial formation of the olfactory nerve tract. Our results present a novel mechanism in which BMP signals negatively affect Notch activity in a dominant manner in the olfactory epithelium, thereby regulating neurogenesis and explain why a balance of BMP and Notch activity is critical for the generation of neurons and proper development of the olfactory nerve

    Wnt/Ξ²-catenin Signalling Is Active in a Highly Dynamic Pattern during Development of the Mouse Cerebellum

    Get PDF
    The adult cerebellum is composed of several distinct cell types with well defined developmental origins. However, the molecular mechanisms that govern the generation of these cell types are only partially resolved. Wnt/Ξ²-catenin signalling has a wide variety of roles in generation of the central nervous system, though the specific activity of this pathway during cerebellum development is not well understood. Here, we present data that delineate the spatio-temporal specific pattern of Wnt/Ξ²-catenin signaling during mouse cerebellum development between E12.5 and P21. Using the BAT-gal Wnt/Ξ²-catenin reporter mouse, we found that Wnt/Ξ²-catenin activity is present transiently at the embryonic rhombic lip but not at later stages during the expansion of cell populations that arise from there. At late embryonic and early postnatal stages, Wnt/Ξ²-catenin activity shifts to the cerebellar ventricular zone and to cells arising from this germinal centre. Subsequently, the expression pattern becomes progressively restricted to Bergmann glial cells, which show expression of the reporter at P21. These results indicate a variety of potential functions for Wnt/Ξ²-catenin activity during cerebellum development

    Sedentary behaviour is associated with increased long-term cardiovascular risk in patients with rheumatoid arthritis independently of moderate-to-vigorous physical activity

    Get PDF
    Background Rheumatoid Arthritis (RA) is associated with an increased risk of cardiovascular disease (CVD). The physical dysfunction symptomatic of RA means people living with this disease spend large periods of the day sedentary, which may further elevate their risk of CVD. The primary aim of this study was to investigate relationships between objectively assessed sedentary behaviour patterns and light physical activity (LPA) with 10-year risk of CVD. Secondary aims were to explore the role of sedentary behaviour patterns and LPA for individual CVD risk factors and functional disability in RA. The extent to which associations were independent of moderate-to-vigorous physical activity (MVPA) engagement was also examined. Methods Baseline data from a subsample of participants recruited to the Physical Activity in Rheumatoid Arthritis (PARA) study were used to answer current research questions. Sixty-one patients with RA (mean age (Β± SD) = 54.92 ± 12.39 years) provided a fasted blood sample and underwent physical assessments to evaluate factors associated with their cardiovascular health. Sedentary behaviour patterns (sedentary time, sedentary bouts, sedentary breaks), LPA and MVPA were measured via 7-days of accelerometry. Ten-year CVD risk was computed (Q-risk-score2), and functional disability determined via questionnaire. Results Regressions revealed significant positive associations between sedentary time and the number of sedentary bouts per day β‰₯20 min with 10-year CVD risk, with the reverse true for LPA participation. Associations were independent of MVPA engagement. Conclusions Promoting LPA participation and restricting sedentary bouts to <20 min may attenuate long-term CVD risk in RA, independent of MVPA engagement
    • …
    corecore