703 research outputs found

    LUMBAR SPINE IN SENIOR AND ELITE LEVEL ROWERS – A COMPARISON WITH THE LOW BACK PAIN POPULATION

    Get PDF
    Low back pain (LBP) is very prevalent in the sport of rowing. Elite rowers miss on average 24 days from training in rowing related injuries per year (Bernstein et al 2002). A wireless posture monitor (Sels Instruments, Belgium) has recently been developed, which can measure lumbar spine posture in real time. The monitor has good face validity and laboratory bench testing has established the accuracy of the monitor. The aims of this investigation were to; (1) determine the reliability of this novel method of monitoring lumbar spine posture during rowing, and (2) determine if there are differences in lumbar spine posture between rowers with/without LBP during an incremental “step-test”. These original pilot studies will inform further development of the monitor prior to final validation studies, and use of the monitor in larger studies

    Evaluating coefficient of performance and rate of moisture loss of some biomass humidifiers materials with a developed simple direct stand-alone evaporative cooling system for farmers

    Get PDF
    © 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)The purpose of this study was to investigate the feasibility of deploying direct evaporative cooler with Jute fiber, palm fruit mesocarp fiber and wooden charcoal as humidifier in Nigeria. High cost of imported evaporative coolers and humidifiers can discourage farmers and limited adoption of evaporative cooling technology. For this purpose an experimental direct evaporative cooling test rig was developed and assembled in south western Nigeria with biomass humidifier. The evaluation parameters were the humidifying efficiency, the rate of moisture loss, coefficient of performance and sensible heat ratio. The humidifier presented average cooling efficiency of 55.9 to 78.62 %, average rate of moisture loss of 1.37 × 10 -3 to 2.61 × 10 -3 kg/s, average COP of 8.48 to 23.42 (EER of 11 to 78) and average sensible heat ratio of 1.28 × 10 -4 to 4.06 × 10 -4 for the air velocity of 3.0 to 4.5 m/s. The obtain performance can be better in a dryer month or nearly impossible in a very wet month as the humidifying efficiency of direct evaporative coolers are found to diminish at high humidity. To avoid casting doubt on the effectiveness of direct evaporative cooler by farmers, it should only serve as stop gap preservation equipment and deployed during the favorable weather condition especially during the winter when the air is dry. These can be identified from the metrological charts of the chosen location.Peer reviewe

    Image Deblurring and Near-real-time Atmospheric Seeing Estimation through the Employment of Convergence of Variance

    Get PDF
    A new image reconstruction algorithm is presented that will remove the effect of atmospheric turbulence on motion compensated frame average images. The primary focus of this research was to develop a blind deconvolution technique that could be employed in a tactical military environment where both time and computational power are limited. Additionally, this technique can be employed to measure atmospheric seeing conditions. In a blind deconvolution fashion, the algorithm simultaneously computes a high resolution image and an average model for the atmospheric blur parameterized by Fried’s seeing parameter. The difference in this approach is that it does not assume a prior distribution for the seeing parameter, rather it assesses the convergence of the image’s variance as the stopping criteria and identification of the proper seeing parameter from a range of candidate values. Experimental results show that the convergence of variance technique allows for estimation of the seeing parameter accurate to within 0.5 cm and often even better depending on the signal to noise ratio

    Characteristics of shock-induced boundary layer separation on nacelles under windmilling diversion conditions

    Get PDF
    The boundary layer on the external cowl of an aero-engine nacelle under windmilling diversion conditions is subjected to a notable adverse pressure gradient due to the interaction with a near-normal shock wave. Within the context of Computational Fluid Dynamics (CFD) methods, the correct representation of the characteristics of the boundary layer is a major challenge to capture the onset of the separation. This is important for the aerodynamic design of the nacelle as it may assist in the characterization of candidate designs. This work uses experimental data obtained from a quasi-2D rig configuration to provide an assessment of the CFD methods typically used within an industrial context. A range of operating conditions is investigated to assess the sensitivity of the boundary layer to changes in inlet Mach number and mass flow through a notional windmilling engine. Fully turbulent and transitional boundary layer computations are used to determine the characteristics of the boundary layer and the interaction with the shock on the nacelle cowl. The correlation between the onset of shock induced boundary layer separation and pre-shock Mach number is assessed and the boundary layer integral characteristics ahead of the shock and the post-shock recovery evaluated and quantified. Overall, it was found that the CFD is able to discern the onset of boundary layer separation for a nacelle under windmilling conditions

    Comparison of metal ion-induced conformational changes in parvalbumin and oncomodulin as probed by the intrinsic fluorescence of tryptophan 102.

    Get PDF
    The calcium-induced conformational changes of the 108-amino acid residue proteins, cod III parvalbumin and oncomodulin, were compared using tryptophan as a sensitive spectroscopic probe. As native oncomodulin is devoid of tryptophan, site-specific mutagenesis was performed to create a mutant protein in which tryptophan was placed in the identical position (residue 102) as the single tryptophan residue in cod III parvalbumin. The results showed that in the region probed by tryptophan-102, cod III parvalbumin experienced significantly greater changes in conformation upon decalcification compared to the oncomodulin mutant, F102W. Addition of 1 eq of Ca2+ produced greater than 90% of the total fluorescence response in F102W, while in cod III parvalbumin, only 74% of the total was observed. Cod III parvalbumin displayed a negligible response upon Mg2+ addition. In contrast, F102W did respond to Mg2+, but the response was considerably less when compared to Ca2+ addition. Time-resolved fluorescence showed that the tryptophan in both proteins existed in at least two conformational states in the presence of Ca2+ and at least three conformational states in its absence. Comparison with quantum yield measurements indicated that the local electronic environment of the tryptophan was significantly different in the two proteins. Collectively, these results demonstrate that both cod III parvalbumin and oncomodulin undergo Ca2(+)-specific conformational changes. However, oncomodulin is distinct from cod III parvalbumin in terms of the electronic environment of the hydrophobic core, the magnitude of the Ca2(+)-induced conformational changes, and the number of calcium ions required to modulate the major conformational changes

    Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells.

    Get PDF
    With particular focus on bulk heterojunction solar cells incorporating ZnO nanorods, we study how different annealing environments (air or Zn environment) and temperatures impact on the photoluminescence response. Our work gives new insight into the complex defect landscape in ZnO, and it also shows how the different defect types can be manipulated. We have determined the emission wavelengths for the two main defects which make up the visible band, the oxygen vacancy emission wavelength at approximately 530 nm and the zinc vacancy emission wavelength at approximately 630 nm. The precise nature of the defect landscape in the bulk of the nanorods is found to be unimportant to photovoltaic cell performance although the surface structure is more critical. Annealing of the nanorods is optimum at 300°C as this is a sufficiently high temperature to decompose Zn(OH)2 formed at the surface of the nanorods during electrodeposition and sufficiently low to prevent ITO degradation.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Depairing critical current achieved in superconducting thin films with through-thickness arrays of artificial pinning centers

    Full text link
    Large area arrays of through-thickness nanoscale pores have been milled into superconducting Nb thin films via a process utilizing anodized aluminum oxide thin film templates. These pores act as artificial flux pinning centers, increasing the superconducting critical current, Jc, of the Nb films. By optimizing the process conditions including anodization time, pore size and milling time, Jc values approaching and in some cases matching the Ginzburg-Landau depairing current of 30 MA/cm^2 at 5 K have been achieved - a Jc enhancement over as-deposited films of more than 50 times. In the field dependence of Jc, a matching field corresponding to the areal pore density has also been clearly observed. The effect of back-filling the pores with magnetic material has then been investigated. While back-filling with Co has been successfully achieved, the effect of the magnetic material on Jc has been found to be largely detrimental compared to voids, although a distinct influence of the magnetic material in producing a hysteretic Jc versus applied field behavior has been observed. This behavior has been tested for compatibility with currently proposed models of magnetic pinning and found to be most closely explained by a model describing the magnetic attraction between the flux vortices and the magnetic inclusions.Comment: 9 pages, 10 figure
    corecore