148 research outputs found
239 + 240Pu from “contaminant” to soil erosion tracer: Where do we stand?
As soil erosion is the major threat to one of the most essential resources of humankind, methods to quantify soil redistribution are crucial for agro-environmental assessment as well as for optimisation of soil conservation practices. The use of fallout radionuclides (FRN) as soil redistribution tracers is, next to modelling, currently the most promising approach for assessing soil erosion. This review aims to evaluate the suitability of Plutonium (Pu) in general and the 239+240Pu isotopes in particular as soil redistribution tracers. It provides information on its origin, distribution and behaviour in soils and in the environment. Analytical methods, their recent advances as well as limitations, are discussed. To establish the current state of knowledge and to deepen our understanding, particular attention is given to the main existing achievements and findings based on using 239+240Pu as soil erosion tracer in agroecosystems. We further discuss similarities and differences to other more mature FRN techniques such as the 137Cs based approach which has been until now the most widely used method. We conclude that 239+240Pu has the potential to become the next generation of soil redistribution tracer compared to the more mature FRN techniques mostly due to (i) its long half-life guaranteeing its long-term availability in the environment, (ii) its analytical advantage in terms of measurement precision and measurement time and (iii) its greater homogeneity at reference sites due to its main origin from past atmospheric nuclear weapon tests. In identifying some key future research opportunities and needs, we hope to refine the efficiency of this promising agro-environmental tracer for effective soil redistribution studies under future climate and land use change
Tracing sediment sources in an agriculture and livestock catchment of Argentina through the use of geochemical fingerprints
A mixing modelling approach (CSSIAR v2.00), using Energy Dispersive X Ray Fluorescence (EDXRF) and Total Organic Carbon (TOC) data as fingerprints for sediment sources and sinks, was applied for identifying critical hot spots of erosion in a typical Argentinian agro-ecosystem. The selected study site is the Estancia Grande catchment, covering 1235 hectares, which is located 23 km north east of San Luis (in the centre of Argentina). The studied catchment, which is characterized by highly erodible Haplic Kastanozem soils, is currently being used for agriculture (crop rotation), and livestock (free grazing and feedlots), and some fields are used for growing nut trees (walnuts and almonds) (Figure 1). Further fallow land is found in between the agriculture land and in the upper part of the catchment.Fil: Torres Astorga, Romina Vanesa. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias FĂsico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Velasco, Ricardo Hugo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias FĂsico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Resch, C.. Organismo Internacional de EnergĂa AtĂłmica ; AustriaFil: Gruber, R.. Organismo Internacional de EnergĂa AtĂłmica ; AustriaFil: Padilla, R.. Organismo Internacional de EnergĂa AtĂłmica ; AustriaFil: Dercon, G.. Organismo Internacional de EnergĂa AtĂłmica ; AustriaFil: Mabit, L.. Organismo Internacional de EnergĂa AtĂłmica ; Austri
Practical solutions for sampling alternatives in large-scale models
Many large-scale real-world transport applications have choice sets that are so large as to make model estimation and application computationally impractical. The ability to estimate models on subsets of the alternatives is thus of great appeal, and correction approaches have existed since the late 1970s for the simple multinomial logit (MNL) model. However, many of these models in practice rely on nested logit specifications, for example, in the context of the joint choice of mode and destination. Recent research has put forward solutions for such generalized extreme value (GEV) structures, but these structures remain difficult to apply in practice. This paper puts forward a simplification of the GEV method for use in computationally efficient implementations of nested logit. The good performance of this approach is illustrated with simulated data, and additional insights into sampling error are also provided with different sampling strategies for MNL
Phosphorylation State-Dependent Interactions of Hepadnavirus Core Protein with Host Factors
Dynamic phosphorylation and dephosphorylation of the hepadnavirus core protein C-terminal domain (CTD) are required for multiple steps of the viral life cycle. It remains unknown how the CTD phosphorylation state may modulate core protein functions but phosphorylation state-dependent viral or host interactions may play a role. In an attempt to identify host factors that may interact differentially with the core protein depending on its CTD phosphorylation state, pulldown assays were performed using the CTD of the duck hepatitis B virus (DHBV) and human hepatitis B virus (HBV) core protein, either with wild type (WT) sequences or with alanine or aspartic acid substitutions at the phosphorylation sites. Two host proteins, B23 and I2PP2A, were found to interact preferentially with the alanine-substituted CTD. Furthermore, the WT CTD became competent to interact with the host proteins upon dephosphorylation. Intriguingly, the binding site on the DHBV CTD for both B23 and I2PP2A was mapped to a region upstream of the phosphorylation sites even though B23 or I2PP2A binding to this site was clearly modulated by the phosphorylation state of the downstream and non-overlapping sequences. Together, these results demonstrate a novel mode of phosphorylation-regulated protein-protein interaction and provide new insights into virus-host interactions
A SELEX-Screened Aptamer of Human Hepatitis B Virus RNA Encapsidation Signal Suppresses Viral Replication
Background: The specific interaction between hepatitis B virus (HBV) polymerase (P protein) and the e RNA stem-loop on pregenomic (pg) RNA is crucial for viral replication. It triggers both pgRNA packaging and reverse transcription and thus represents an attractive antiviral target. RNA decoys mimicking e in P protein binding but not supporting replication might represent novel HBV inhibitors. However, because generation of recombinant enzymatically active HBV polymerase is notoriously difficult, such decoys have as yet not been identified. Methodology/Principal Findings: Here we used a SELEX approach, based on a new in vitro reconstitution system exploiting a recombinant truncated HBV P protein (miniP), to identify potential e decoys in two large e RNA pools with randomized upper stem. Selection of strongly P protein binding RNAs correlated with an unexpected strong enrichment of A residues. Two aptamers, S6 and S9, displayed particularly high affinity and specificity for miniP in vitro, yet did not support viral replication when part of a complete HBV genome. Introducing S9 RNA into transiently HBV producing HepG2 cells strongly suppressed pgRNA packaging and DNA synthesis, indicating the S9 RNA can indeed act as an e decoy that competitively inhibits P protein binding to the authentic e signal on pgRNA. Conclusions/Significance: This study demonstrates the first successful identification of human HBV e aptamers by an in vitro SELEX approach. Effective suppression of HBV replication by the S9 aptamer provides proof-of-principle for the abilit
Hemi-Castaing ligamentoplasty for the treatment of chronic lateral ankle instability: a retrospective assessment of outcome
Purpose: In the treatment of chronic ankle instability, most non-anatomical reconstructions use the peroneus brevis tendon. This, however, sacrifices the natural ankle stabilising properties of the peroneus brevis muscle. The aim of this study was to evaluate the functional outcome of patients treated with a hemi-Castaing procedure, which uses only half the peroneus brevis tendon. Methods: We performed a retrospective cohort study of patients who underwent hemi-Castaing ligamentoplasty for chronic lateral ankle instability between 1993 and 2010, with a minimum of one year follow-up. Patients were sent a postal questionnaire comprising five validated outcome measures: Olerud-Molander Ankle Score (OMAS), Karlsson Ankle Functional Score (KAFS), Tegner Activity Level Score (pre-injury, prior to surgery, at follow-up), visual analog scale on pain (VAS) and the Short Form 36 (SF-36). Results: Twenty patients completed the questionnaire on functional outcome. The OMAS showed good to excellent outcome in 80% and the KAFS in 65%, the Tegner Score improved from surgery but did not reach pre-injury levels, the VAS on pain was 1 of 10 and the SF-36 returned to normal compared with the average population. Conclusions: Even though most patients were satisfied with the results, outcome at long-term follow-up was less favourable compared with the literature on anatomical reconstructions. In accordance with the literature, we therefore conclude that the initial surgical treatment of chronic lateral ankle instability should be an anatomical repair with augmentation (i.e. the Broström-Gould technique) and the non-anatomical repair should be reserved for unsuccessful cases after anatomical repair or in cases where no adequate ligament remnants are available for reconstruction
A review of source tracking techniques for fine sediment within a catchment
Excessive transport of fine sediment, and its associated pollutants, can cause detrimental impacts in aquatic environments. It is therefore important to perform accurate sediment source apportionment to identify hot spots of soil erosion. Various tracers have been adopted, often in combination, to identify sediment source type and its spatial origin; these include fallout radionuclides, geochemical tracers, mineral magnetic properties and bulk and compound-specific stable isotopes. In this review, the applicability of these techniques to particular settings and their advantages and limitations are reviewed. By synthesizing existing approaches, that make use of multiple tracers in combination with measured changes of channel geomorphological attributes, an integrated analysis of tracer profiles in deposited sediments in lakes and reservoirs can be made. Through a multi-scale approach for fine sediment tracking, temporal changes in soil erosion and sediment load can be reconstructed and the consequences of changing catchment practices evaluated. We recommend that long-term, as well as short-term, monitoring of riverine fine sediment and corresponding surface and subsurface sources at nested sites within a catchment are essential. Such monitoring will inform the development and validation of models for predicting dynamics of fine sediment transport as a function of hydro-climatic and geomorphological controls. We highlight that the need for monitoring is particularly important for hilly catchments with complex and changing land use. We recommend that research should be prioritized for sloping farmland-dominated catchments
A review of source tracking techniques for fine sediment within a catchment
Excessive transport of fine sediment, and its associated pollutants, can cause detrimental impacts in aquatic environments. It is therefore important to perform accurate sediment source apportionment to identify hot spots of soil erosion. Various tracers have been adopted, often in combination, to identify sediment source type and its spatial origin; these include fallout radionuclides, geochemical tracers, mineral magnetic properties and bulk and compound-specific stable isotopes. In this review, the applicability of these techniques to particular settings and their advantages and limitations are reviewed. By synthesizing existing approaches, that make use of multiple tracers in combination with measured changes of channel geomorphological attributes, an integrated analysis of tracer profiles in deposited sediments in lakes and reservoirs can be made. Through a multi-scale approach for fine sediment tracking, temporal changes in soil erosion and sediment load can be reconstructed and the consequences of changing catchment practices evaluated. We recommend that long-term, as well as short-term, monitoring of riverine fine sediment and corresponding surface and subsurface sources at nested sites within a catchment are essential. Such monitoring will inform the development and validation of models for predicting dynamics of fine sediment transport as a function of hydro-climatic and geomorphological controls. We highlight that the need for monitoring is particularly important for hilly catchments with complex and changing land use. We recommend that research should be prioritized for sloping farmland-dominated catchments
- …