104 research outputs found

    Kondo-like transport and magnetic field effect of charge carrier fluctuations in granular aluminum oxide thin films

    Get PDF
    Granular aluminum oxide is an attractive material for superconducting quantum electronics. However, its low-temperature normal state transport properties are still not fully understood, while they could be related to the unconventional phenomenon of the superconductivity in this material. In order to obtain useful information on this aspect, a detailed study of charge carrier fluctuations has been performed in granular aluminum oxide films. The results of electric noise measurements indicate the presence of a Kondo-type spin-flip scattering mechanism for the conducting electrons in the normal state, at low temperatures. Moreover, the magnetic field dependence of the noise amplitude suggests that interface magnetic moments are the main source of fluctuations. The identification of the nature of fluctuation processes is a mandatory requirement for the improvement of quality and performance of quantum devices

    Kondo-like transport and magnetic field effect of charge carrier fluctuations in granular aluminum oxide thin films

    Get PDF
    Granular aluminum oxide is an attractive material for superconducting quantum electronics. However, its low-temperature normal state transport properties are still not fully understood, while they could be related to the unconventional phenomenon of the superconductivity in this material. In order to obtain useful information on this aspect, a detailed study of charge carrier fluctuations has been performed in granular aluminum oxide films. The results of electric noise measurements indicate the presence of a Kondo-type spin-flip scattering mechanism for the conducting electrons in the normal state, at low temperatures. Moreover, the magnetic field dependence of the noise amplitude suggests that interface magnetic moments are the main source of fluctuations. The identification of the nature of fluctuation processes is a mandatory requirement for the improvement of quality and performance of quantum devices

    Investigation of superstorm Sandy 2012 in a multi-disciplinary approach

    Get PDF
    At the end of October 2012, Hurricane Sandy moved from the Caribbean Sea into the Atlantic Ocean and entered the United States not far from New York. Along its track, Sandy caused more than 200 fatalities and severe losses in Jamaica, The Bahamas, Haiti, Cuba, and the US. This paper demonstrates the capability and potential for near-real-time analysis of catastrophes. It is shown that the impact of Sandy was driven by the superposition of different extremes (high wind speeds, storm surge, heavy precipitation) and by cascading effects. In particular the interaction between Sandy and an extra-tropical weather system created a huge storm that affected large areas in the US. It is examined how Sandy compares to historic hurricane events, both from a hydro-meteorological and impact perspective. The distribution of losses to different sectors of the economy is calculated with simple input-output models as well as government estimates. Direct economic losses are estimated about USD 4.2 billion in the Caribbean and between USD 78 and 97 billion in the US. Indirect economic losses from power outages is estimated in the order of USD 16.3 billion. Modelling sector-specific dependencies quantifies total business interruption losses between USD 10.8 and 15.5 billion. Thus, seven years after the record impact of Hurricane Katrina in 2005, Hurricane Sandy is the second costliest hurricane in the history of the United States

    Investigation of superstorm Sandy 2012 in a multi-disciplinary approach

    Get PDF
    At the end of October 2012, Hurricane Sandy moved from the Caribbean Sea into the Atlantic Ocean and entered the United States not far from New York. Along its track, Sandy caused more than 200 fatalities and severe losses in Jamaica, The Bahamas, Haiti, Cuba, and the US. This paper demonstrates the capability and potential for near-real-time analysis of catastrophes. It is shown that the impact of Sandy was driven by the superposition of different extremes (high wind speeds, storm surge, heavy precipitation) and by cascading effects. In particular the interaction between Sandy and an extra-tropical weather system created a huge storm that affected large areas in the US. It is examined how Sandy compares to historic hurricane events, both from a hydro-meteorological and impact perspective. The distribution of losses to different sectors of the economy is calculated with simple input-output models as well as government estimates. Direct economic losses are estimated about USD 4.2 billion in the Caribbean and between USD 78 and 97 billion in the US. Indirect economic losses from power outages is estimated in the order of USD 16.3 billion. Modelling sector-specific dependencies quantifies total business interruption losses between USD 10.8 and 15.5 billion. Thus, seven years after the record impact of Hurricane Katrina in 2005, Hurricane Sandy is the second costliest hurricane in the history of the United States

    Canonical Nlrp3 Inflammasome Links Systemic Low-Grade Inflammation to Functional Decline in Aging

    Get PDF
    SummaryDespite a wealth of clinical data showing an association between inflammation and degenerative disorders in the elderly, the immune sensors that causally link systemic inflammation to aging remain unclear. Here we detail a mechanism by which the Nlrp3 inflammasome controls systemic low-grade age-related “sterile” inflammation in both periphery and brain independently of the noncanonical caspase-11 inflammasome. Ablation of Nlrp3 inflammasome protected mice from age-related increases in the innate immune activation, alterations in CNS transcriptome, and astrogliosis. Consistent with the hypothesis that systemic low-grade inflammation promotes age-related degenerative changes, the deficient Nlrp3 inflammasome-mediated caspase-1 activity improved glycemic control and attenuated bone loss and thymic demise. Notably, IL-1 mediated only Nlrp3 inflammasome-dependent improvement in cognitive function and motor performance in aged mice. These studies reveal Nlrp3 inflammasome as an upstream target that controls age-related inflammation and offer an innovative therapeutic strategy to lower Nlrp3 activity to delay multiple age-related chronic diseases

    Leptin Receptor Signaling and Action in the Central Nervous System

    Full text link
    The increasing incidence of obesity in developed nations represents an ever‐growing challenge to health care by promoting diabetes and other diseases. The discovery of the hormone, leptin, a decade ago has facilitated the acquisition of new knowledge regarding the regulation of energy balance. A great deal remains to be discovered regarding the molecular and anatomic actions of leptin, however. Here, we discuss the mechanisms by which leptin activates intracellular signals, the roles that these signals play in leptin action in vivo, and sites of leptin action in vivo. Using “reporter” mice, in which LRb‐expressing (long form of the leptin receptor) neurons express the histological marker, ÎČ‐galactosidase, coupled with the detection of LRb‐mediated signal transducer and activator of transcription 3 signaling events, we identified LRb expression in neuronal populations both within and outside the hypothalamus. Understanding the regulation and physiological function of these myriad sites of central leptin action will be a crucial next step in the quest to understand mechanisms of leptin action and energy balance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/93692/1/oby.2006.310.pd

    Das Brehm PrÀzision Knie (BPK) mit mobiler Plattform - Gibt es geschlechtsspezifische Unterschiede?

    No full text
    • 

    corecore