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SUMMARY

Despite a wealth of clinical data showing an associa-
tion between inflammation and degenerative disor-
ders in the elderly, the immune sensors that causally
link systemic inflammation to aging remain unclear.
Here we detail a mechanism by which the Nlrp3
inflammasome controls systemic low-grade age-
related ‘‘sterile’’ inflammation in both periphery and
brain independently of the noncanonical caspase-
11 inflammasome. Ablation of Nlrp3 inflammasome
protected mice from age-related increases in the
innate immune activation, alterations in CNS tran-
scriptome, and astrogliosis. Consistent with the
hypothesis that systemic low-grade inflammation
promotes age-related degenerative changes, the
deficient Nlrp3 inflammasome-mediated caspase-1
activity improved glycemic control and attenuated
bone loss and thymic demise. Notably, IL-1mediated
only Nlrp3 inflammasome-dependent improvement
in cognitive function and motor performance in
aged mice. These studies reveal Nlrp3 inflamma-
some as an upstream target that controls age-related
inflammation and offer an innovative therapeutic
strategy to lower Nlrp3 activity to delay multiple
age-related chronic diseases.

INTRODUCTION

The Nlrp3 inflammasome is unique among innate immune sen-

sors, as it can be activated in response to a diverse array of

endogenousmetabolic ‘‘danger signals’’ to induce sterile inflam-

mation in absence of overt infection (Dinarello, 2009; Martinon

et al., 2009; Strowig et al., 2012). The Nlrp3 inflammasome

controls caspase-1 activation, which is required for secretion

of IL-1b and IL-18 to regulate obesity-induced inflammation

and insulin resistance (Stienstra et al., 2011, Vandanmagsar
Cell
et al., 2011; Wen et al., 2011). Clinically, aging is associated

with increases in IL-18, IL-1 receptor antagonist (IL-1RA), and

IL-6, while circulating IL-1b levels are undetectable (Ferrucci

et al., 2005; Franceschi et al., 2007; Dinarello, 2009). Global

age-related systemic inflammation in multiple organs, including

adipose tissue and CNS, is postulated to be a common mecha-

nism leading to several chronic degenerative disorders that

negatively impacts the healthspan of the elderly (Lumeng et al.,

2011; Green et al., 2011; Ferrucci et al., 2005; Franceschi

et al., 2007). However, the mechanisms underlying maladaptive

systemic inflammation in several organs in the absence of overt

infection, as observed during aging, are still speculative.

Both IL-1b and IL-18 mediate several downstream effects of

Nlrp3 inflammasome-dependent caspase-1 activation (Martinon

et al., 2009). However, IL-1 is thought to play a predominant role

in development of several age-related degenerative diseases,

including type 2 diabetes and Alzheimer’s disease (Youm

et al., 2011; Heneka et al., 2013). Importantly, in addition to

IL-1, caspase-1 has multiple substrates and can also induce

adipose tissue inflammation and insulin resistance by cleavage

of Sirt1 (Chalkiadaki and Guarente., 2012). Depending on the

disease model, several redundant upstream mechanisms con-

trol the processing and secretion of mature IL-1b; these include

neutrophil-derived serine proteinase 3 and granzyme A (Dinar-

ello, 2009). In addition to distinct NLR and AIM2 inflammasomes,

caspase-1 can also be activated via CARD-CARD interactions of

the noncanonical caspase-11 inflammasome in response to

pathogens (Kayagaki et al., 2011; Strowig et al., 2012). Notably,

the Nlrp3 inflammasome can also be activated by nonmicrobial

origin DAMPs such as lipotoxic fatty acids (Wen et al., 2011),

ceramides (Vandanmagsar et al., 2011, Youm et al., 2012), free

cholesterol (Duewell et al., 2010; Youm et al., 2012), uric acid

(Martinon et al., 2006), ATP (Mariathasan et al., 2006), and

ROS (Strowig et al., 2012). Many DAMPs are elevated during

aging and thus could trigger Nlrp3 inflammasome activation to

produce age-related inflammation (Ruggiero et al., 2006; Cutler

et al., 2004).

Age-related inflammation in multiple organs may lead to

functional decline even in absence of a specific disease. It has

been hypothesized that fundamental trade-off between the
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cost-benefit ratio of inflammatory immune response that allows

survival against early life infections may have deleterious conse-

quences on organ function as human lifespan extends beyond

the reproductive age in a constructed niche of energy excess

and relatively low microbial exposure (Okin and Medzhitov

2012). Notably, aging remains a significant risk factor for multiple

chronic diseases such as diabetes, atherosclerosis, dementia,

arthritis, and cancer (Green et al., 2011). However, the identity

of immune sensors that mediate a chronic inflammatory state in

normal aging process remains obscure, and it is also uncertain

whether reduction in specific proinflammatory mechanisms can

impact the multiple degenerative conditions during aging. Here,

we show that the Nlrp3 inflammasome is a major sensor of age-

related accumulation of DAMPs and an upstream regulator that

controls caspase-1-mediated proinflammatory state in aging

independently of caspase-11 pathway. Consistent with the

long-held belief that low-grade chronic inflammation instigates

age-related functional decline, we present experimental evi-

dence to support the hypothesis that reduction of Nlrp3 inflam-

masome is a common mechanism that extends the healthspan

and attenuates multiple age-related degenerative changes in

periphery aswell as brain. In addition, we show that during aging,

IL-1 signaling does not mediate Nlrp3 inflammasome effects on

glucose tolerance, thymic demise, T cell senescence, and bone

loss.Ourdata reveal that IL-1 regulatesNlrp3-mediated cognitive

decline and functional measures of frailty. These data provide

evidence that inhibiting aberrant Nlrp3 activity during aging

may lower age-related chronic diseases driven by inflammation.

RESULTS

The Nlrp3 Inflammasome Controls Age-Related
Inflammation in Periphery
Recent evidence suggests that in response to high-fat diet

(HFD), Nlrp3- and Asc-deficient mice defend against adiposity

(Stienstra et al., 2011). However, it has also been demonstrated

that development of HFD-induced dysbiosis in a different strain

of Asc mutant mice causes increased obesity (Henao-Mejia

et al., 2012). Therefore, we monitored the body weight of normal

chow-fed Nlrp3�/� and Asc�/� mice until 24 months of age.

When fed a normal chow diet, the Nlrp3�/� and Asc�/� mice

did not show any significant difference in body weight until

6 months of age. However, the male Nlrp3�/� mice weighed

significantly more than WT and Asc�/� mice at 9 and 20 months

of age (Figures S1A and S1B). By 24 months of age, male and

female Nlrp3, Asc, and caspase-11 mutant mice did not show

any significant difference in body weight (Figures S1A and

S1B). Furthermore, compared to 24-month-old WT mice, the

Nlrp3�/� animals did not show any difference in body composi-

tion (Figure S2) or hepatic steatosis (Figure S1B), and no change

in hepatic Il6 was detected (Figure S2B).

Nlrp3 inflammasomes can sense a wide array of DAMPs;

indeed, multiple age-relevant DAMPs such as extracellular ATP,

urate, ceramides, and palmitate induced IL-1b activation in mac-

rophages in an Nlrp3-dependent manner (Figure 1A). Further-

more, ablation of Nlrp3 lowered aging-associated caspase-1

activation in adipose tissue (Figure 1B, Figure S1C), suggesting

reduction in inflammasome-dependent peripheral inflammation.

Further investigation revealed that age-related increase in adi-
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pose tissue IL-1b expression was significantly reduced in Nlrp3-

deficient mice but not in aged caspase-11 mutants, while no

significant age-related changesweredetected in liver (Figure 1C).

Interestingly, age-related increase in circulating IL-18 was

significantly reduced in Nlrp3-deficient mice (Figure 1D) and

was unaffected in Casp11�/� mice, whereas the loss of Asc

totally abrogated the rise of IL-18 in agedmice (Figure 1D). Given

that Asc is also required for the assembly of Nlrp6, Nlrp12, and

AIM2 (absent in melanoma2) inflammasome (Strowig et al.,

2012), these data suggest that multiple inflammasomes may

partake in mechanisms that control age-related rise in IL-18.

Serum and plasma IL-1b levels in 23-month-old WT mice were

not measurable. Furthermore, the loss of Nlrp3 and Asc did not

affect the age-related increase in IL-6 (Figure 1E). Given that

development of age-related inflammation is linked to glucose

intolerance, and Nlrp3-deficient mice are protected from age-

related increase in caspase-1 activation, we conducted glucose

tolerance tests at 14, 19, and 23 months of age in three different

cohorts of mice (Figures 1F and 1G). Compared to 19- and

23-month-old WT mice (Figure 1G), the Nlrp3 mutant animals

displayed improved glucose tolerance, while no change in GTT

was observed at 14 months of age (Figure 1F).

During obesity, IL-1b mediates the majority of downstream

effects of Nlrp3 inflammasome activation that produce glucose

intolerance (Stienstra et al., 2011; McGillicuddy et al., 2011).

Therefore, we next evaluated the role of IL-1 in development of

glucose intolerance during healthy aging process. Similar to

Nlrp3�/�, the aged Il1r�/�micedid not show increased adiposity

or alteration in lean or fat mass (Figure S2C). We found that abla-

tion of IL1 signaling in aged mice reduced the proinflammatory

complement component C3 (Figure 1H) without affecting Tnf

and Il10 gene expression (Figures 1I and 1J). Furthermore, in

contrast to diet-induced obesity (Stienstra et al., 2011;

McGillicuddy et al., 2011), the 20-month-old chow-fed Il1r�/�
mice did not show any improvement in glucose tolerance when

compared toWTcontrols (Figure 1K). Notably, caspase-1 activa-

tion impairs lipid metabolism independently of IL-1 and IL-18

family of cytokines (Kotas et al., 2013). Our data suggest that dur-

ing aging, reduction in Nlrp3 inflammasome-induced caspase-1

activation improves glucose tolerance independently of IL-1.

Given that the expansion of effector T cells at the expense of

naive cells is a hallmark feature of peripheral inflammation that

is linked to thymic involution (Goronzy and Weyand, 2005), we

next examined the role of canonical Nlrp3 inflammasome, cas-

pase-11, and IL-1 on thymic aging and effector T cells during

aging. The aging cohorts of Nlrp3-deficient mice were signifi-

cantly protected from age-related thymic involution as evi-

denced by reduced ectopic adipocytes, increased thymic size,

and maintenance of cortical and medullary architecture and

increased thymic mass and thymocyte numbers (Figure 2A).

The ablation of inflammasome adaptor, Asc, significantly

reduced age-related effector T cell expansion with higher naive

T cell frequency in spleen while the aged caspase-11 mice

were indistinguishable from the WT mice (Figures 2B and 2C).

Importantly, recent data suggest that loss of Dock2 expression

due to potential inactivating passenger mutations in certain

strains of Asc-deficient mice causes alterations in T cell homeo-

stasis, which results in lower naive T cell frequency (Ippagunta

et al., 2011). Given that our Asc-deficient mice had higher naive
c.
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Figure 1. The Nlrp3 Inflammasome Controls Metabolic Inflammation and Glucose Intolerance in Aging

(A) LPS primed WT and Nlrp3�/� BMDMs were stimulated with multiple aging-relevant DAMPs, and supernatants were analyzed for active IL-1b (p17) by

immunoblotting.

(B) Caspase-1 immunoblot analysis in epididymal adipose tissue of 2- and 15-month-old WT and 15-month-old Nlrp3�/� mice maintained on control chow diet.

Age-related increase in caspase-1 activation (p20) subunit of caspase-1 is substantially reduced in absence of Nlrp3.

(C) Real-time PCR analysis of proinflammatory cytokines Il1b in liver and epididymal fat pad (n = 4–6/age group/genotype).

(D and E) Serum IL-18 (D) and IL-6 (E) levels in 2- and 23-month-old WT, Nlrp3�/� and Asc�/�, Casp11�/� mice (n = 6–8 mice per age group/strain).

(F and G) Glucose tolerance test in 14- and 19- (F) and 23-month-old (G) WT, Nlrp3�/� mice maintained on control chow diet (n = 7–9/age group/genotype).

(H–K) Real-time PCR analysis of proinflamamtory mediators complement C3, Tnf, and Il10 in epididymal adipose tissue (H–J) and glucose tolerance test (K) in

20-month-old WT and Il1r�/� mice (n = 9/group). All data are presented as mean (SEM) *p < 0.05. See also Figures S1 and S2.
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T cell frequency, we examined the Dock2 expression in spleen

and bone-marrow-derived macrophages of aged WT and

Asc�/� mice. We found that Asc-deficient mice in our colony

express Dock2 normally, and protection from inflammation-

induced degenerative changes in aged Asc�/� mice is not

dependent on Dock2 mutation or dysregulation (Figure 2D).

Interestingly, unlike Nlrp3- and Asc-deficient mice, loss of IL-1

signaling in aged animals did not protect against thymic demise

(Figures 2E and 2F). Compared to 20-month-old WT mice, the

Il1r�/� mice did not show any change in thymic weight or

thymocyte numbers (Figure 2E) and CD4 and CD8 naive and

effector T cell frequency (Figure 2F).

The Nlrp3 Inflammasome Induces Age-Related
Hippocampal Astrogliosis and Inflammation in CNS
Age-related inflammation is thought to negatively impact CNS

function. Furthermore, considering that the inflammasome is

expressed in myeloid lineage cells, and microglial activation is

implicated in causing age-related dementias (Cutler et al.,
Cell
2004; Czirr and Wyss-Coray, 2012; Ransohoff and Brown,

2012), we next asked whether the canonical Nlrp3 inflamma-

some regulates inflammation in aging brain. No differences in

inflammasome-dependent alterations in hippocampal microglial

distribution were observed in aged mice (Figure S3A). Immuno-

staining with Iba1+ revealed that ablation of Nlrp3 in 23-month-

old mice reduced the microglial activation in the dentate gyrus

(DG) region of hippocampus (Figure 3A). Consistent with

reduced microglial activation, the ablation of both Nlrp3 and

Asc significantly reduced mRNA expression of proinflammatory

cytokines Il1b and Tnf (Figures 3B and 3C) without significantly

affecting the age-related increase in Il6 in hippocampus (Fig-

ure S3B). Interestingly, ablation of Nlrp3 did not protect against

age-related increase in hypothalamic microglial activation (Fig-

ure S4A) and inflammation (Figure S4B), suggesting specific

effects on the brain regions that control cognition and memory.

Astrogliosis is an important mechanism that contributes to

age-related functional decline and dementia (Ransohoff and

Brown, 2012). The GFAP staining revealed reduced astrogliosis
Metabolism 18, 519–532, October 1, 2013 ª2013 Elsevier Inc. 521
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Figure 2. Ablation of Nlrp3 Inflammasome Reduces Age-Related Thymic Involution and Effector T Cell Expansion in an IL-1-Independent

Mechanism

(A) Thymi of 23-month-oldWT and Nlrp3mice. The FFPE section of 23-month-oldNlrp3�/�mice display reduced ectopic lipid, maintenance of cortical-medullary

junctions, and lower thymic involution as measured by increased thymic mass and total thymocyte counts in Nlrp3 mutant mice.

(B and C) FACS analysis depicting (CD4/CD8+CD62L+CD44�) and effector-memory E/M (CD4/CD8+CD62L�CD44+) T cells from 2- (left) and 23-month-old (right)

WT and age-matched Asc�/� and Casp11�/� mice (n = 6–8).

(D) Immunoblot analyses and quantification of dock2 in spleen and bone-marrow-derived macrophages (BMDMs) of WT and Asc�/� mice.

(E) Thymic weight and total thymocyte counts for 20-month-old WT and Il1r�/� mice (n = 9/group).

(F) The FACS analysis of splenocytes revealed that compared to 20-month-old WT mice, the Il1r�/� mice do not show any significant difference in CD4 or CD8

naive and effector-memory frequency (n = 9/group). All data are presented as mean (SEM) *p < 0.05.
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in hippocampus of aged Nlrp3�/�mice (Figure 3D). Interestingly,

the age-related increase in GFAP immunostaining that localized

to the DG region was lower in age-matched Nlrp3 mutants (Fig-

ure 3D). To further confirm a role of the inflammasome in astro-

gliosis, we placed WT and Nlrp3�/� mice on HFD for a period

of 14 months and then examined the GFAP immunopositivity

(Figure S3C). Obesity significantly accelerates astrogliosis and

age-related neurodegeneration (Frisardi et al., 2010, Czirr and

Wyss-Coray 2012); importantly, we found that HFD- and ag-

ing-induced hippocampal astrogliosis was reduced in Nlrp3�/�

mice (Figures S3C and 3F). In addition, purified Glast1+ astro-

glial cells express high levels of procaspase-1 and in response

to extracellular ATP are fully competent to induce inflammasome
522 Cell Metabolism 18, 519–532, October 1, 2013 ª2013 Elsevier In
activation (Figure 3G). Further examination of astrocyte

morphology by GFAP staining revealed that in DG regions,

aged WT mice displayed astrocyte hypertrophy (Figure 3E).

Consistent with increased age-related astrogliosis, the PoDG

and Mol layer of DG in aged WT mice displayed pronounced

overlap of astrocyte processes (Figure 3E). Interestingly, in

age-matched Nlrp3�/� mice, astrocytic hypertrophy was

reduced and the territories of astrocyte processes did not over-

lap, suggesting reduced astrogliosis (Figure 3E). Importantly, the

investigation of caspase-1 activation in CNS revealed that elim-

ination of Nlrp3 substantially reduced the age-related increase in

caspase-1 cleavage (Figures 3H and 3I) as well as activated the

p17 subunit of IL-1b in hippocampus (Figure 3J and Figure S3D).
c.
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Figure 3. Nlrp3 Inflammasome Regulates Age-Related Caspase-1 Activation and Astrogliosis in Brain

(A) Brain cryosections from WT and Nlrp3 mutant mice (23 months old) were stained with anti-Iba antibody Alexa Fluor 488 (green) to identify microglial

morphology in dentate gyrus region of hippocampus. Representative confocal Z stack images revealed reduced microglia activation in aged Nlrp3�/�

mice (n = 5).

(B and C) Real-time PCR analysis of proinflammatory cytokines Il1b (B) and Tnf (C) in hippocampus and cerebral cortex in young (2 months) and old (23 months)

WT, Nlrp3�/�, and Asc�/� mice (n = 4–6 per age group/strain).

(D) Brain cryosections from WT and Nlrp3�/� mice (23 months old) were stained with anti-GFAP antibody. Hippocampal astrogliosis was evident in aged DG

(dentate gyrus) and Mol (molecular layer of DG) while Nlrp3�/� mice displayed lower GFAP immunoreactivity in DG and regions.

(E) The confocal Z stack analysis of anti-GFAP-stained cryosection of 24-month-old WT and Nlrp3�/�mice in PoDG and Mol layer of hippocampus revealed that

loss of Nlrp3 protects against age-related astrogliosis and change in astrocytic morphology (n = 4/strain repeated thrice).

(F) Quantification of mean fluorescence intensity of GFAP immunoreactivity in hippocampus of WT and Nlrp3�/� mice maintained on 60% HFD for 14 months.

(G) The caspase-1 immunoblot analysis of Glast1+ astrocytes primed with LPS and stimulated with ATP reveals the presence of active p20 subunit of capsase-1.

(H–J) Caspase-1 (H and I) and IL-1b (J) quantification by immunoblot analysis in hippocampus of 2-month-old and 23-month-old WT and 23-month-old Nlrp3�/�

mice. All data are presented as mean (SEM) *p < 0.05. See also Figures S3 and S4.
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Figure 4. Nlrp3 Inflammasome Regulates Age-Dependent Alterations in Hippocampal Transcriptome

(A) The age-related changes in gene expression profiling on hippocampal tissue obtained from WT as well as Nlrp3 and Asc mutant mice.

(B) A set of 298 gene probes that respond to aging and are modulated by loss of Nlrp3 and Asc.

(C) Examination of the direction of change revealed that nearly all (295 of 298) gene probes with expression differences between old and young WT (blue bars)

show expression changes in the opposite direction when comparing old mutant to old WT.

(D and E) Pathway analyses of genes with age-dependent expression differences reveal a strong enrichment of genes related to cell death as well as to

inflammatory disease inWTmice compared to Nlrp3 and Ascmutants. Similar differences in association were found for NF-kB, IL-1, and IL-8 signaling, where the

respective pathways were found to be strongly associated with age-dependent expression differences in WT mice compared to Nlrp3�/� and Asc�/� animals.

(F) The list of genes (p < 0.05, 1.5-fold change) that are involved in cell death and inflammation and regulated by both Nlrp3 and Asc during aging. This pattern

suggests that these genes are characterized by age-dependent gene expression changes, which are regulated by the absence of the Nlrp3 inflammasome

activity. See also Figure S5.
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The Ablation of Nlrp3 Inflammasome Protects against
Age-Related Alterations in the Transcriptome
To provide a more global view, we employed gene expression

profiling to gain further understanding of the Nlrp3 inflamma-

some-dependent mechanism of age-related inflammation in
524 Cell Metabolism 18, 519–532, October 1, 2013 ª2013 Elsevier In
hippocampus. Compared to young WT and mutant mice, we

observed significantly broader expression differences in aged

WT and Nlrp3�/� and Asc�/� mice (Figure 4A), involving 2.5–3

times more genes compared to young (Figure 4A). Genes were

first queried for age-dependent expression changes in WT
c.



A

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Irak1 Irak2 Irak3 Tab2

IL1 signaling
Hippocampus

*
*

* *

*

Fo
ld

 C
ha

ng
e 

*

egnahC
dl oF

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

Gfap2 Synemin Il33

*

*

* *

Astrogliosis Pathway
Hippocampus

Complement pathway
Hippocampus

0.00

5.00

10.00

15.00

20.00

25.00

30.00

C3 C4b C1qa C1qb

egnah
C

dl oF

2 mo WT
23 mo WT
23 mo Nlrp3-/-
23 mo Casp11-/-

* *

* *

* * * *
0.00

1.00

2.00

3.00

4.00

5.00

6.00
Interferon pathway

Hippocampus

Ifitm3 Gbp2

egnahC
dl oF

*

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Trib2

*
* *

*

*

2 mo WT
23 mo WT
23 mo Nlrp3-/-
23 mo Casp11-/-

2 mo WT
23 mo WT
23 mo Nlrp3-/-
23 mo Casp11-/-

2 mo WT
23 mo WT
23 mo Nlrp3-/-
23 mo Casp11-/-

0.00

5.00

10.00

15.00

20.00

25.00

C3 C4b C1qa C1qb

egnahC
dl oF

Complement pathway
(Cortex)

* *

*

Tenascin C Id3

Neural-Learning/memory
(Hippocampus)

* **

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Bdnf

*

* *

egnahC
dl oF

2 mo WT
23 mo WT
23 mo Nlrp3-/-
23 mo Casp11-/-

2 mo WT
23 mo WT
23 mo Nlrp3-/-
23 mo Casp11-/-

B

C D

E F

Figure 5. Ablation of Canonical Nlrp3

Inflammasome Reduces Innate Immune

Activation in CNS

(A–E) The hippocampi from young, old WT, and

old (23 months) Nlrp3�/� and Casp11�/� were

used to confirm the pathways identified from

microarray profiling. Real-time PCR analysis of (A)

IL-1 signaling, (B) astrogliosis pathway, (C) inter-

feron pathway and (D and E) complement

pathway, and (F) gene implicated in cognitive

function. All data are presented as mean (SEM)

*p < 0.05.
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mice. The resulting subset of genes was then interrogated for

presence of genes with genotype-dependent changes of

expression in old mice, with the goal of identifying pathways

that are modulated by the loss of Nlrp3 inflammasome activity

in aging (Figure 4B). Figure 4B shows the set of 298 gene probes

that respond to aging, yet are modulated by either of the two

mutant genotypes (Nlrp3 and Asc). The gene probes were sorted

according to their expression change observed in the wild-type,

old-versus-young comparison. Nearly all gene probes show

reciprocal regulation when comparing age effects inWT to geno-

type effects in old mice, as genes with age-dependent increase

of expression showed reduced expression in old Nlrp3- and

Asc-deficient mice compared to old WT mice, and vice versa

(Figure 4B). Comparing age-dependent changes in the mutants

(aged Asc�/� versus young Asc�/�, aged Nlrp3�/� versus young

Nlrp3�/�) to WT (young versus old) shows that only a small frac-

tion of these gene probes respond to genotype in young mice

(Figure 4B).

Comparing the age-dependent response in WT to genotype-

dependent responses among aged animals, a total of 298 gene

probes were impacted by ablation of both Nlrp3 and Asc

(Figure S5). Interestingly, examination of the direction of

change revealed that nearly all (295 of 298) gene probes

altered with age in WT mice showed expression changes in

the opposite direction when comparing both old Nlrp3 and

Asc mutants to old WT mice (Figure 4C). Consistent with

recent studies, our data revealed that age-associated enrich-

ment of NF-kB, IL-1, and IL-8 signaling proinflammatory

pathways was partially dependent on the Nlrp3 inflammasome
Cell Metabolism 18, 519–532
(Figure 4D). Furthermore, gene ontology

enrichment analysis revealed that abla-

tion of the Nlrp3 inflammasome pro-

tected against age-related elevation of

cell death and inflammation pathways

(Figure 4E). The genes identified from

these analyses suggest that the group

of genes involved in cell death and

inflammatory process are characterized

by age-dependent gene expression

changes that are moderated by the

absence of both Asc and the Nlrp3

inflammasome activity (Figure 4F).

Notably, in certain disease models Asc

may have unique functions that are

independent of inflammasome-mediated
caspase-1 cleavage (Ippagunta et al., 2011). Our data provide

evidence that during aging, Nlrp3 and Asc perform analogous,

Nlrp3 inflammasome-dependent functions to regulate age-

related inflammation.

Reduction in Canonical Nlrp3 Inflammasome Reduces
Age-Associated Innate Immune Activation
We next investigated the age-dependent and Nlrp3 inflamma-

some-regulated pathways that were identified from the global

expression profiling analysis in hippocampus. Consistent with

a role of IL-1b signaling in mediating Nlrp3 inflammasome

downstream effects, age-related increases in Irak3 mRNA

were significantly reduced in hippocampus of aged Nlrp3 null

mutants (Figure 5A). The astrogliosis signatures identified from

microarray in hippocampus confirmed that age-related

increases in Gfap and alarmin Il33 expression were dependent

on Nlrp3 without affecting synemin (Figure 5B). Ablation of

Nlrp3 protected against age-related activation of interferon

response (Ifitm3, Gbp2, and Trib2) in hippocampus (Figure 5C).

We identified marked age-related increases in complement

pathway genes—C3, C4, C1qa, C1qb—in hippocampus (Fig-

ure 5D) as well as cortex (Figure 5E), which were significantly

reduced in Nlrp3-deficient mice. Reduction in Nlrp3 inflamma-

some hippocampus was associated with increases in genes

involved in learning and memory (Tenascin, Id3, and Bdnf)

(Figure 5F). Interestingly, ablation of noncanonical caspase-11

inflammasome did not protect against age-related gene

expression changes observed in hippocampus or cortex

(Figures 5A–5F).
, October 1, 2013 ª2013 Elsevier Inc. 525
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Figure 6. Ablation of IL-1 Signaling Partially

Protects against Age-Related Functional

Decline

(A) The hippocampi from separate cohort of young

(3 months), old (20 months) WT, and Il1r�/� mice

(n = 6–12/group) were analyzed for complement,

interferon, and Nlrp3-dependent inflammatory

genes using real-time PCR.

(B) The Stone T-maze test in 20-month-old WT

mice and age-matched Il1r�/�mice (n = 12/group).

Mice were given 15 trials in the T-maze with each

trial having a maximum length of 300 s, and the

number of errors during each trial block was

recorded.

(C) Bone mineral content of femorae of 20-month-

old WT and Il1r�/� mice (n = 12) is measured in

grams of calcium hydroxypatite; bone mineral

density represents the mineral in bone per area,

i.e., areal bone mineral density.

(D) The mean latency to fall from a rotating rod

(rotarod test) in 20-month-old WT and Il1r�/� mice

(n = 12).

(E and F) The treadmill test showing total running

time and total distance run by 20-month-old WT

and Il1r�/� mice (n = 12). All data are presented as

mean (SEM) *p < 0.05.
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IL-1 Partakes in Regulating Age-Related CNS
Inflammation and Functional Decline
IL-1 signaling downstream of Nlrp3 inflammasome activation is

hypothesized to be a major mechanism that controls ‘‘sterile’’

inflammation in CNS and in several age-related chronic diseases

including dementia (Dinarello, 2009; Martinon et al., 2009; Stro-

wig et al., 2012). We found that, similar to the hippocampi of

aged Nlrp3-deficient mice, the age-related increases in comple-

ment C3 and interferon response genes Gbp2 and Ifitm3 were

blunted in aged IL-1 receptor null mice (Figure 6A). However, un-

likeNlrp3�/�mice, the disruption of IL-1 signaling in aging did not

affect age- and Nlrp3-dependent inflammatory markers Trib2,

Gfap, and Il33 (Figure 6A). Next, we utilized the Stone T-maze

test to evaluate age-related changes in memory and learning

because this test avoids the confounding effects of impaired

visual function seen in old mice (Pistell et al., 2012). Importantly,

and consistent with overall reduction in inflammation in hippo-

campus, analysis of cognitive function, one of the measures
526 Cell Metabolism 18, 519–532, October 1, 2013 ª2013 Elsevier Inc.
of functional decline, revealed that,

compared to WT mice, the aged Il1r�/�
animals displayed partially improved

learning ability in a Stone T-maze

(Figure 6B).

Given that age-related inflammation is

linked with other degenerative changes,

such as reduced bone mass and

increased frailty, we also investigated

the motor performance measured on the

rotarod and the treadmill tests. Analysis

of bone mineral content and bone min-

eral density of femurs revealed no differ-

ence between Il1r�/� animals and the

20-month-old WT controls (Figure 6C).
Interestingly, compared to WT mice, the 20-month-old IL-1R-

deficient animals displayed enhanced performance on the

rotarod (Figure 6D) and displayed significantly increased running

time and distance on the treadmill (Figures 6E and 6F), suggest-

ing reduced frailty.

Reduction in Nlrp3 Inflammasome Activity Extends
Healthspan
As further evidence that reductionofNlrp3 inflammasomeactivity

links inflammation with age-related functional decline, we noted

remarkable effects on several age-sensitive functional and path-

ological indices. Consistent with significant reduction in hippo-

campal inflammation and astrogliosis, the aged Nlrp3�/� mice

were significantly protected fromage-related decline in cognition

and memory (Figure 7A). Importantly, error performance of WT

and Nlrp3�/� mice during the first two blocks of maze training

did not differ significantly (Figure 7A). These data demonstrate

that the performance requirements of the task were equivalent.
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As additional support of this point, further analyses showed that

Nlrp3�/� mice were actually ‘‘slower’’ in the maze over this same

period (Figure 7B), opposite to what would be predicted if differ-

ences in enhanced motor performance of Nlrp3 mutants

confounded the interpretation of cognitive differences. To further

confirm this effect, an additional cohort of WT and mutant mice

were aged until 24 months, at which time results show reduced

numbers of errors made during maze acquisition in the older

Nlrp3�/� mice (Figure 7C). No significant genotype effects were

observed in open field and fear conditioning tests (Figures S6A

andS6B). As further evidence that specific reduction in activation

of the canonical Nlrp3 inflammasome activation, but not the

caspase-11 inflammasome, drives many aging processes,

aged caspase-11 null mice did not show any protection from

age-related functional decline on rotarod or Stone T-maze test

(Figures S6C and S6D).

Similar to Il1r�/� animals, the 18- and 24-month-old Nlrp3-

deficient animals displayed enhanced performance on the

rotarod (Figure 7D) and displayed significantly increased running

time and distance on the treadmill (Figures 7E and 7F).

Regarding age-sensitive pathological indices, aged Nlrp3

mutants displayed significantly reduced cataract formation (Fig-

ure 7G). Interestingly, unlike aged IL-1R-deficient animals, which

were not protected from bone loss, the 24-month-old Nlrp3-defi-

cient mice had significantly increased cortical (Figures 7H and 7I)

and trabecular bone thickness (Figures 7J and 7K). As further

evidence that reduction in Nlrp3 inflammasome activation pro-

tects against age-related bone loss, the 24-month-old Nlrp3�/�

mice had significantly higher bone mineral content, bone mineral

density, and total bone area (Figures 7L–7N). Aged Nlrp3�/�

mice also exhibited greater cortical bone area (Figure 7O), as

well as a higher polar moment of inertia (Figure 7P and Figures

S6E–S6G), as a functional measure of greater bone strength.

No reduction in marrow volume in aged Nlrp3-deficient mice

was detected, an important observation that rules out develop-

ment of osteopetrosis due to dysfunctional osteoclast activity

(Figures S6H and S6I). Furthermore, in support of prior data

that aging does not engage noncanonical inflammasome, the

aged Casp11�/� mice were not protected from age-related

changes in cortical or trabecular bone mass and mineral density

(Figure S7). In summary, these data demonstrate that specific

inhibition of Nlrp3 inflammasome-mediated caspase-1 activa-

tion controls age-related functional decline, and IL-1 proinflam-

matory cascade is not the sole mediator of downstream effects

of Nlrp3 inflammasome activation during aging.

DISCUSSION

The mouse and human genome encodes 34 and 23 NLR (Nod-

like receptor) family members, which can assemble into the

inflammasome complex through homotypic protein-protein

interactions (Martinon et al., 2009). It is currently not known

whether age-related inflammation and inflammasome activation

are regulated by specific NLRs. Importantly, Nlrp3 is unique

among NLRs as it can sense a wide array of structurally diverse

DAMPs, and excessive Nlrp3 inflammasome activation has been

implicated in chronic diseases such as Alzheimer’s diseases

(Heneka et al., 2013), diabetes (Masters et al., 2010; Vandan-

magsar et al., 2011; Wen et al., 2011; Youm et al., 2011), athero-
Cell
sclerosis (Duewell et al., 2010), arthritis, and gout (Martinon et al.,

2006). That age is a common factor in development of all of the

above chronic diseases raised several questions. First, is the

IL-1b- and IL-18-driven chronic inflammation during the healthy

aging process in the absence of overt diseases regulated by

canonical or noncanonical inflammasome pathway? Second, is

IL-1 signaling downstream of inflammasomes the major mecha-

nism that controls age-related functional decline? This question

has important translational implications in aging, because if IL-1b

is a common trigger for age-related inflammation, it may bemore

efficient to use currently available IL-1 inhibitors instead of

targeting multiple upstream inflammasomes and non-inflamma-

some-dependent mechanisms that control IL-1activation. Third,

the ‘‘inflammaging theory’’ posits that ‘‘aging either physiologi-

cally or pathologically can be driven by the proinflammatory

cytokines and substances produced by the innate immune sys-

tem’’ (Franceschi et al., 2000; Goto., 2008). If the ‘‘inflammaging

theory’’ is correct, one should predict that an experimental

manipulation of a specific innate immune sensing pathway

should result in attenuation of age-related functional decline

across multiple systems. Our results provide compelling evi-

dence that the Nlrp3 inflammasome activation causes global

age-related inflammation in multiple organs, with consequences

such as thymic demise, impaired glycemic control, reduced

memory and cognition, motor performance, cataracts, and

bone loss.

Given that aging-associated inflammation is systemic and the

inflammasome is widely expressed in several organs, we exam-

ined age-related degenerative changes across multiple sys-

tems. Our data provide evidence that age-related increase in

caspase-1 in adipose tissue, hippocampus, and thymus is

partially controlled by the Nlrp3 inflammasome. Careful

monitoring of body weight and composition of WT, Nlrp3�/�,
Asc�/�, Il1r�/�, and Casp11�/� animal cohorts maintained in

SPF barrier and fed ad libitum normal chow diet revealed no

significant change in adiposity at 24 months of age. Impor-

tantly, prior studies have shown that ablation of IL-18 induces

hyperphagia, adiposity, and insulin resistance in mice, suggest-

ing that IL-18 is required for improved glucose homeostasis

(Netea et al., 2006). On the other hand, IL-1 is thought to play

a predominant role in inducing insulin resistance in response

to HFD (Stienstra et al., 2011; McGillicuddy et al., 2011). How-

ever, our studies revealed that during aging, in mice fed normal

chow diet, IL-1 is not required for mediating downstream

effects of Nlrp3 inflammasome on glucose intolerance. It is

now known that caspase-1 acts on multiple substrates,

including ones that control glycolysis (Shao et al., 2007) and

Sirt1, which are relevant to aging and glucose homeostasis

(Chalkiadaki and Guarente., 2012). Furthermore, caspase-1 is

required for triglyceride clearance independently of IL-1 and

IL-18 (Kotas et al., 2013). Importantly, our studies also revealed

that improvement in insulin sensitivity in Nlrp3-deficient mice is

relatively late in age and that initiation of insulin resistance is not

a central event to development of degenerative disorders

observed in aging. For example, aging of thymus precedes

degenerative changes in many organs. Of note, the ablation

of Nlrp3 protects against age-related thymic demise and

restriction of T cell diversity before the emergence of metabolic

dysfunction that appears in late life.
Metabolism 18, 519–532, October 1, 2013 ª2013 Elsevier Inc. 527
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Figure 7. Reduction in Nlrp3 Inflammasome Activation Enhances Healthspan and Reduces Age-Related Functional Decline
(A) The Stone T-maze test in 18-month-oldWTmice and age-matchedNlrp3�/�mice (n = 8/group). Mice were given 15 trials in the T-maze with each trial having a

maximum length of 300 s. During each trial, the number of errors committed was recorded.

(B) Mean latency to reach the goal box during multiple trials of 18-month-old WT and Nlrp3�/� mice (n = 8/group).

(C) To confirm improved memory and cognitive performance, an additional cohort of WT littermates and Nlrp3�/� mice were aged for 24 months (n = 6–8/strain)

and the total number of errors in a Stone T-maze test was recorded.

(D) Compared to WT mice, age-matched Nlrp3�/� mice (18 months old) displayed improved performance on the rotarod (tested in two separate cohorts of n = 8

each, 4 males and 4 females).

(E and F) At 24months of age, additional oldWT littermates andNlrp3�/�micewere also tested for running distance and time using a treadmill test (n = 6–9/group)

(p = 0.05).

(G) The same cohort of WT littermates and Nlrp3�/� mice were tested for lens opacity in both eyes by an ophthalmologist using a slit lamp and scored

on a scale of normal (0), punctuate (1), incipient (2), diffuse (3), and complete (4). The ophthalmologist was blinded to the group identity to reduce

investigator bias.

(H and I) Representative microcomputed tomographic images of cortical bone cross-sections from the mid-femur diaphysis of 24-month-old female WT (n = 5)

and Nlrp3�/� mice (n = 8). The female WT and Nlrp3�/� mouse femurs were imaged by microcomputed tomography.

(J and K) The microcomputed tomographic scans of trabecular bone mass (J) and trabecular thickness (K) in 24-month-old male WT and Nlrp3�/�

femorae.

(legend continued on next page)
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The noncanonical caspase-11 inflammasome can interact

with caspase-1 via the CARD domain (Wang et al., 1998). Also,

caspase-11 and not caspase-1 is the major sensor of LPS and

regulates endotoxemia-associated lethality in mice (Kayagaki

et al., 2011). Importantly, recently work also shows that cas-

pase-11 is a major sensor of LPS independently of TLR4, as

priming of caspase-11 by sublethal dose of TLR3 agonists in

Tlr4�/� mice and subsequent challenge of Tlr4�/� with LPS

causes endotoxemia andmorbidity (Kayagaki et al., 2013). Given

that aging is associated with changes in gut microbiome (Claes-

son et al., 2012) and prior studies have reported circulating LPS

as a potential cause of inflammation in metabolic syndrome

(Creely et al., 2007), we also investigated if caspase-11 is

involved in ‘‘inflammaging’’ process through potential interaction

with gut-derived LPS. Our data further underscore the specificity

of Nlrp3 inflammasome in causing ‘‘sterile’’ age-related inflam-

mation without the engagement of caspase-11 by potential

age-related ‘‘metabolic endotoxemia’’ caused by LPS leakage

from GI tract.

Importantly, consistent with the ‘‘inflammaging theory,’’ we

found that reduction in Nlrp3 inflammasome-dependent proin-

flammatory cascade attenuated age-related degenerative

changes across multiple organs. Prior studies have shown that

astrogliosis is one of the mechanisms of age-related cognitive

decline, and IL-1b is known to promote astrogliosis (Morgan

et al., 1999). In the CNS, we found that the Nlrp3 inflammasome

is a major regulator of age-related increase in caspase-1 and

IL-1b. Importantly, reduction in Nlrp3 attenuated astrogliosis in

hippocampus. Global gene expression analyses revealed that

age-related activation of innate immune regulators, such as

complement and interferon, was downregulated in Nlrp3 and

Asc knockout mice. These data lend additional support to the

recent evidence suggesting that complement activation pro-

motes aging-related phenotypes (Naito et al., 2012). Consistent

with our findings, treatment of acute onset demyelinating disor-

ders in humans with IL-1 receptor antagonist Anakinra reduces

complement C3 (Broderick et al., 2013). Our data demonstrate

that IL-1 is required for Nlrp3 inflammasome-mediated age-

related increase in complement C3 and interferon activation.

Furthermore, IL-1 mediates in part the age-related reduction in

cognitive function and motor performance, although the elimina-

tion of Nlrp3 led to greater protection from cognitive decline.

Notably, enhanced lifespan in mice treated with rapamycin is

associated with amelioration of few aging phenotypes and also

leads to several detrimental effects, such as increased cataract

formation, testicular degeneration, and reduced insulin sensi-

tivity (Lamming et al., 2012; Neff et al., 2013). Although it remains

unknown whether reduction in Nlrp3 activation can extend life-

span, our data demonstrate unequivocally that deletion of

Nlrp3 inflammasome enhances healthspan and prevents func-

tional decline in multiple organs, including protection against

thymic demise, cataract development, and glucose intolerance,

and also enhances cortical and trabecular bone mass. Surpris-
(L and M) Bone mineral content of 24-month-old male WT and Nlrp3�/� mice (n

represents the mineral in bone per area, i.e., areal bone mineral density. The coe

(N–P) Similar to malemice, the 24-month-old femaleNlrp3�/�mice displayed sign

(MOI). All behavioral and functional analyses inWT andmutantmicewere conduct

0.05. See also Figures S6 and S7.

Cell
ingly, despite an important role of IL-1 in osteoarthritis (Dinarello,

2009), during the process of healthy aging, bone loss was

dependent on Nlrp3 but independent of downstream IL-1

signaling. Interestingly, the increase in cortical bone mass has

been demonstrated to be a predictor of enhanced lifespan in

mice (Miller et al., 2011). Based on our findings, future studies

will be required to test the hypothesis that attenuation of age-

related degenerative changes mediated by Nlrp3 inflammasome

promotes longevity.

In summary, activation of the Nlrp3 inflammasome in response

to accumulation of various DAMPs induces systemic chronic

inflammation in aging. Our data suggest that dietary or pharma-

cological approaches to dampen Nlrp3 inflammasome activa-

tion may be more efficient than targeting downstream cytokines

in disrupting the feed-forward loop of inflammation and age-

related chronic diseases.

EXPERIMENTAL PROCEDURES

Mice and Animal Care

The Caspase11�/�, Nlrp3�/�, and Asc�/� mice have been described (Maria-

thasan et al., 2006; Kayagaki et al., 2011). The Il1r�/� mice were purchased

from Jackson Laboratories. All transgenic mice introduced in our colony

were cross-fostered to our facilities with WT parent cohorts to minimize the

confounding effects of alterations in microbiome. The WT littermates and

mutant cohorts for aging studies were housed with a 12 hr light/12 hr dark

cycle at 22�C. The mice were multi-housed and fed ad libitum normal chow

diet consisting of 4.5% fat (5002; LabDiet) and aged in the specific path-

ogen-free barrier facility in ventilated cage racks that deliver HEPA filtered

air to each cage with free access to sterile water through a hydropac system.

Sentinel mice in our animal rooms were negative for currently tested standard

murine pathogens (Ectromelia, EDIM, LCMV, Mycoplasma pulmonis, MHV,

MNV, MPV, MVM, PVM, REO3, TMEV, and Sendai virus) at various times while

the aging studies were performed (RADIL, Research Animal Diagnostic Labo-

ratory, Columbia, MO). All experiments and animal use were conducted in

compliance with the National Institutes of Health Guide for the Care and Use

of Laboratory Animals and were approved by the Institutional Animal Care

and Use Committee at Pennington Biomedical Research Center.

Antibodies

For FACS analysis the following antibodies (from eBiosciences, Inc.) were

used: CD4-PerCP, CD8-APC, CD44-FITC, and CD62L-PE. All the FACS

data were analyzed by postcollection compensation using FlowJo (Treestar,

Inc.) software. The anti-GFAP and -Iba1 antibodies were from Cell Signaling.

For western blot analysis: procaspase1 (p20 antibodies were from Genen-

tech), IL-1b (actin antibodies were from R&D).

Rotarod Test and Stone T-Maze

This test is a widely used functional assay for measuring balance and coordi-

nation in rodents that has shown age-related sensitivity in mice. For the

current study, the apparatus was manufactured by MED Associates

(St. Albans, VT) and consists of a motor-driven cylinder with variable speed

control. The rotarod begins moving at 4 rpm and over a period of 5 min accel-

erates to a speed of 40 rpm. The mouse is placed on top of the rotating cyl-

inder at the slowest speed and permitted locomotion until falling (about

10 cm). The latency to fall from the rotarod is recorded. Each mouse received

a total of five trials with readout recorded as mean time spent on the rotarod

over five trials.
= 13) is measured in grams of calcium hydroxypatite; bone mineral density

fficient of variation for repetitive scanning ex vivo is approximately 2.4%.

ificant increase in (N) total bone area, (O) cortical area, and (P) moment of inertia

ed in an investigator-blinded fashion. All data are presented asmean (SEM) *p <
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The Stone T-maze test was performed as described previously (Pistell et al.,

2012). Briefly, mice were required to navigate through a complex T-maze to

reach a goal box as a test of cognition. Motivation to escape from the start

box to the goal box involves the mouse wading through water (maintained at

21�C–24�C). During each trial, the number of errors committed and the latency

to reach the goal box are recorded. The readouts for the assay are runtime and

number of errors.

Treadmill Test

A Columbus Instruments’ Eco 3/6 treadmill was used to analyze motor perfor-

mance and endurance. The mice were motivated to run by an electric shock

grid at the end of each lane. The mice were trained at a constant speed

(8 m/min) for 20 min on 3 consecutive days prior to the test to allow proper

acclimation (to the device) and avoid injury. On the day of the test, the speed

was set to 8 m per minute, increasing 0.5 m every 5 min. The mice were

allowed to run to exhaustion, which is after the third time themouse is unwilling

to return to the treadmill and remains on the shock grid. The latency to exhaus-

tion was recorded for each mouse.

Microarray Analysis

The hippocampus from young (2 months, n = 4/genotype) and old (22 months,

n = 6/genotype)WT,Nlrp3�/�, and Asc�/� female animals were used to extract

total RNA (RNAeasy, QIAGEN, Valencia, CA). Quality of RNA for array analysis

was ascertained using an Agilent Bioanalyzer (Agilent Technologies, Santa

Clara, CA). Biological replicates were amplified and labeled using the

Epicenter TargetAmpNano-g Biotin-aRNA Labeling Kit for the Illumina system.

A total of 750 ng labeled RNA was hybridized to MouseRef-8 v2 BeadChip

arrays (Illumina) according to the manufacturer’s protocol. Array data were

processed using Illumina GenomeStudio with respect to background subtrac-

tion and normalization. Data were initially filtered on p value of detection, with

the requirement that gene probes either exhibit signal presence (i.e., p < 0.05)

in all samples for a given pairwise comparison or show presence in all samples

on one side of the comparative paradigm but not the other. Differential expres-

sionwas assessed using CyberT using a t-statistic cutoff at p < 0.05 and a fold-

change cutoff in either direction at 1.2-fold. Confirmatory pairwise and ANOVA

analyses of data were performed in parallel with Geospiza GeneSifter as

described before. JMP Genomics and Cluster3 were used for hierarchical

clustering of genes with a significant difference (�log10(p) > 2.96) in at least

one experimental group as compared to thewild-type old group. Venn analysis

was performed with JMP Genomics and gene ontology enrichment was per-

formed using Ingenuity Pathway Analysis.

Cytokine Measurement

We measured the levels of IL-1b, IL-6 (eBioscience) bead assay, and IL-18 by

ELISA (MBL, Japan) according to manufacturer’s instructions.

Immunohistochemistry

Cryosections from formalin perfused brain were cut at 30 mm thickness on a

sliding microtome. Free-floating sections were stained with anti-GFAP and

anti-Iba1 antibodies, followed by fluorophore-conjugated secondary anti-

bodies as described previously. Livers were formalin fixed, paraffin

embedded, and stained with H&E. Nuclei were counterstained with DAPI.

For fluorescence microscopy, the images were acquired using an identical

image acquisition time for all tissue sections. The images were acquired and

analyzed using Leica TCS SP5 AOBS Resonant Scanning Multiphoton

Confocal microscope. ImageJ software was used to quantitate the fluores-

cence analysis.

Real-Time RT-PCR

Total RNA frommouse epididymal fat, liver, choroid plexus, hippocampus, and

cortex was extracted using RNeasy Lipid Tissue Mini Kit (QIAGEN). Total RNA

was digested by DNase (Invitrogen). The cDNA synthesis and real-time RT-

PCR were performed as described previously (BioRad) (Vandanmagsar

et al., 2011). Quantitative real-time RT-PCR analyses were completed in dupli-

cate on the ABI PRISM 7900 Sequence Detector TaqMan system with the

SYBR Green PCR kit as instructed by the manufacturer (Applied Biosystems).

GAPDH or 36B4 was used for normalization of mouse genes. The list of real-

time PCR primers is shown in Table S1.
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Western Blot Analysis

Mouse fat, spleen, and hippocampus were collected and immediately snap

frozen in liquid nitrogen, then tissues were homogenized in liquid nitrogen

using pestle and mortar to get powdered tissue. The immunoblot analysis

was performed as described previously (Youm et al., 2012). The immune com-

plexes were visualized by incubation with horseradish peroxidase-conjugated

anti-rabbit or anti-rabbit secondary antibody (Amersham Biosciences).

Immunoreactive bands were visualized by enhanced chemiluminescence

(PerkinElmer Life Sciences).

Body Composition Analysis

Body composition parameters were measured using the Bruker minispec

mq10MRS (Bruker Optics, Germany). This analysis includes fat mass, lean tis-

sue mass, free water, and today body water. Mice were placed in an acrylic

tube with breathing holes and placed in the Minispec. The analyzer takes

approximately 90 s and is based on Time Domain Nuclear Magnetic Reso-

nance (TD-NMR) technology, which provides precise measurements in vivo.

Data analysis is automated, and numerical results are then stored and

analyzed further for evaluation.

MicroCT

Fixed femurs in 70% ethanol were scanned using the GE Explore mCT system

at a voxel resolution of 20 mm from 720 views with a beam strength of 80 kvp

and 450 mA. Integration time for each scan was 2,000 ms. Scans included

bones from each condition and a phantom bone to standardize the grayscale

values and maintain consistency between runs. Using the system’s autothres-

hold (800) and isosurface analysis confirmation, bone mineral density (BMD)

and content (BMC) and thickness were computed. Cortical bone measure-

ments are determined with a 2 mm3 region of interest (ROI) in the mid-diaph-

ysis, with the exception of cortical BMD and BMC, which were made in a

0.1 mm3 cube. Cortical thickness, moment of inertia, cortical area, marrow

area, total area, inner perimeter, and outer perimeter, as well as all trabecular

parameters, were computed using the GEMicroview Software for visualization

and analysis of volumetric image data.

Statistical Analyses

A two-tailed Student’s t test was used to test for differences between geno-

types or treatments: *p < 0.05 and p < 0.01, **p < 0.005 and p < 0.001. The

results are expressed as the mean ± SEM. The differences between means

and the effects of treatments were determined by one-way ANOVA using

Tukey’s test (Sigma Stat), which protects the significance (p < 0.05) of all

pair combinations.

ACCESSION NUMBERS

Microarray experiments were designed to comply with MIAME guidelines

(Brazma et al., 2001) and deposited in NCBI’s Gene Expression Omnibus

(Edgar et al., 2002). The data are accessible through GEO series

accession number GSE43034 (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE43034).

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and one table and can be

found with this article online at http://dx.doi.org/10.1016/j.cmet.2013.09.010.
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