647 research outputs found
Plasma wake inhibition at the collision of two laser pulses in an underdense plasma
An electron injector concept for laser-plasma accelerator was developed in
ref [1] and [2] ; it relies on the use of counter-propagating ultrashort laser
pulses. In [2], the scheme is as follows: the pump laser pulse generates a
large amplitude laser wakefield (plasma wave). The counter-propagating
injection pulse interferes with the pump laser pulse to generate a beatwave
pattern. The ponderomotive force of the beatwave is able to inject plasma
electrons into the wakefield. We have studied this injection scheme using 1D
Particle in Cell (PIC) simulations. The simulations reveal phenomena and
important physical processes that were not taken into account in previous
models. In particular, at the collision of the laser pulses, most plasma
electrons are trapped in the beatwave pattern and cannot contribute to the
collective oscillation supporting the plasma wave. At this point, the fluid
approximation fails and the plasma wake is strongly inhibited. Consequently,
the injected charge is reduced by one order of magnitude compared to the
predictions from previous models.Comment: 4 pages, 4 figure
Quasimonoenergetic electron beams produced by colliding cross-polarized laser pulses in underdense plasmas
The interaction of two laser pulses in an underdense plasma has proven to be
able to inject electrons in plasma waves, thus providing a stable and tunable
source of electrons. Whereas previous works focused on the "beatwave" injection
scheme in which two lasers with the same polarization collide in a plasma, this
present letter studies the effect of polarization and more specifically the
interaction of two colliding cross-polarized laser pulses. It is shown both
theoretically and experimentally that electrons can also be pre-accelerated and
injected by the stochastic heating occurring at the collision of two
cross-polarized lasers and thus, a new regime of optical injection is
demonstrated. It is found that injection with cross-polarized lasers occurs at
higher laser intensities.Comment: 4 pages, 4 figure
Energy boost in laser wakefield accelerators using sharp density transitions
The energy gain in laser wakefield accelerators is limited by dephasing
between the driving laser pulse and the highly relativistic electrons in its
wake. Since this phase depends on both the driver and the cavity length, the
effects of dephasing can be mitigated with appropriate tailoring of the plasma
density along propagation. Preceding studies have discussed the prospects of
continuous phase-locking in the linear wakefield regime. However, most
experiments are performed in the highly non-linear regime and rely on
self-guiding of the laser pulse. Due to the complexity of the driver evolution
in this regime it is much more difficult to achieve phase locking. As an
alternative we study the scenario of rapid rephasing in sharp density
transitions, as was recently demonstrated experimentally. Starting from a
phenomenological model we deduce expressions for the electron energy gain in
such density profiles. The results are in accordance with particle-in-cell
simulations and we present gain estimations for single and multiple stages of
rephasing
Early out-of-equilibrium beam-plasma evolution
We solve analytically the out-of-equilibrium initial stage that follows the
injection of a radially finite electron beam into a plasma at rest and test it
against particle-in-cell simulations. For initial large beam edge gradients and
not too large beam radius, compared to the electron skin depth, the electron
beam is shown to evolve into a ring structure. For low enough transverse
temperatures, the filamentation instability eventually proceeds and saturates
when transverse isotropy is reached. The analysis accounts for the variety of
very recent experimental beam transverse observations.Comment: to appear in Phys. Rev. Letter
Growth laws and self-similar growth regimes of coarsening two-dimensional foams: Transition from dry to wet limits
We study the topology and geometry of two dimensional coarsening foams with
arbitrary liquid fraction. To interpolate between the dry limit described by
von Neumann's law, and the wet limit described by Marqusee equation, the
relevant bubble characteristics are the Plateau border radius and a new
variable, the effective number of sides. We propose an equation for the
individual bubble growth rate as the weighted sum of the growth through
bubble-bubble interfaces and through bubble-Plateau borders interfaces. The
resulting prediction is successfully tested, without adjustable parameter,
using extensive bidimensional Potts model simulations. Simulations also show
that a selfsimilar growth regime is observed at any liquid fraction and
determine how the average size growth exponent, side number distribution and
relative size distribution interpolate between the extreme limits. Applications
include concentrated emulsions, grains in polycrystals and other domains with
coarsening driven by curvature
Where Fail-Safe Default Logics Fail
Reiter's original definition of default logic allows for the application of a
default that contradicts a previously applied one. We call failure this
condition. The possibility of generating failures has been in the past
considered as a semantical problem, and variants have been proposed to solve
it. We show that it is instead a computational feature that is needed to encode
some domains into default logic
Current induced transverse spin-wave instability in thin ferromagnets: beyond linear stability analysis
A sufficiently large unpolarized current can cause a spin-wave instability in
thin nanomagnets with asymmetric contacts. The dynamics beyond the instability
is understood in the perturbative regime of small spin-wave amplitudes, as well
as by numerically solving a discretized model. In the absence of an applied
magnetic field, our numerical simulations reveal a hierarchy of instabilities,
leading to chaotic magnetization dynamics for the largest current densities we
consider.Comment: 14 pages, 10 figures; revtex
Laser-plasma interactions with a Fourier-Bessel Particle-in-Cell method
A new spectral particle-in-cell (PIC) method for plasma modeling is presented
and discussed. In the proposed scheme, the Fourier-Bessel transform is used to
translate the Maxwell equations to the quasi-cylindrical spectral domain. In
this domain, the equations are solved analytically in time, and the spatial
derivatives are approximated with high accuracy. In contrast to the
finite-difference time domain (FDTD) methods that are commonly used in PIC, the
developed method does not produce numerical dispersion, and does not involve
grid staggering for the electric and magnetic fields. These features are
especially valuable in modeling the wakefield acceleration of particles in
plasmas. The proposed algorithm is implemented in the code PLARES-PIC, and the
test simulations of laser plasma interactions are compared to the ones done
with the quasi-cylindrical FDTD PIC code CALDER-CIRC.Comment: submitted to Phys. Plasma
- …