151 research outputs found

    Alexander representation of tangles

    Full text link
    A tangle is an oriented 1-submanifold of the cylinder whose endpoints lie on the two disks in the boundary of the cylinder. Using an algebraic tool developed by Lescop, we extend the Burau representation of braids to a functor from the category of oriented tangles to the category of Z[t,t^{-1}]-modules. For (1,1)-tangles (i.e., tangles with one endpoint on each disk) this invariant coincides with the Alexander polynomial of the link obtained by taking the closure of the tangle. We use the notion of plat position of a tangle to give a constructive proof of invariance in this case.Comment: 13 pages, 5 figure

    A Large k Asymptotics of Witten's Invariant of Seifert Manifolds

    Full text link
    We calculate a large kk asymptotic expansion of the exact surgery formula for Witten's SU(2)SU(2) invariant of Seifert manifolds. The contributions of all flat connections are identified. An agreement with the 1-loop formula is checked. A contribution of the irreducible connections appears to contain only a finite number of terms in the asymptotic series. A 2-loop correction to the contribution of the trivial connection is found to be proportional to Casson's invariant.Comment: 51 pages (Some changes are made to the Discussion section. A surgery formula for perturbative corrections to the contribution of the trivial connection is suggested.

    A Contribution of the Trivial Connection to Jones Polynomial and Witten's Invariant of 3d Manifolds I

    Full text link
    We use the Chern-Simons quantum field theory in order to prove a recently conjectured limitation on the 1/K expansion of the Jones polynomial of a knot and its relation to the Alexander polynomial. This limitation allows us to derive a surgery formula for the loop corrections to the contribution of the trivial connection to Witten's invariant. The 2-loop part of this formula coincides with Walker's surgery formula for Casson-Walker invariant. This proves a conjecture that Casson-Walker invariant is a 2-loop correction to the trivial connection contribution to Witten's invariant of a rational homology sphere. A contribution of the trivial connection to Witten's invariant of a manifold with nontrivial rational homology is calculated for the case of Seifert manifolds.Comment: 28 page

    A TQFT associated to the LMO invariant of three-dimensional manifolds

    Full text link
    We construct a Topological Quantum Field Theory (in the sense of Atiyah) associated to the universal finite-type invariant of 3-dimensional manifolds, as a functor from the category of 3-dimensional manifolds with parametrized boundary, satisfying some additional conditions, to an algebraic-combinatorial category. It is built together with its truncations with respect to a natural grading, and we prove that these TQFTs are non-degenerate and anomaly-free. The TQFT(s) induce(s) a (series of) representation(s) of a subgroup Lg{\cal L}_g of the Mapping Class Group that contains the Torelli group. The N=1 truncation produces a TQFT for the Casson-Walker-Lescop invariant.Comment: 28 pages, 13 postscript figures. Version 2 (Section 1 has been considerably shorten, and section 3 has been slightly shorten, since they will constitute a separate paper. Section 4, which contained only announce of results, has been suprimated; it will appear in detail elsewhere. Consequently some statements have been re-numbered. No mathematical changes have been made.

    Exchange Interaction in Binuclear Complexes with Rare Earth and Copper Ions: A Many-Body Model Study

    Full text link
    We have used a many-body model Hamiltonian to study the nature of the magnetic ground state of hetero-binuclear complexes involving rare-earth and copper ions. We have taken into account all diagonal repulsions involving the rare-earth 4f and 5d orbitals and the copper 3d orbital. Besides, we have included direct exchange interaction, crystal field splitting of the rare-earth atomic levels and spin-orbit interaction in the 4f orbitals. We have identified the inter-orbital 4f4f repulsion, Uff_{ff} and crystal field parameter, Δf\Delta_f as the key parameters involved in controlling the type of exchange interaction between the rare earth 4f4f and copper 3d spins. We have explored the nature of the ground state in the parameter space of Uff_{ff}, Δf\Delta_f, spin-orbit interaction strength λ\lambda and the 4f4f filling nf_f. We find that these systems show low-spin or high-spin ground state depending on the filling of the 4f4f levels of the rare-earth ion and ground state spin is critically dependent on Uff_{ff} and Δf\Delta_f. In case of half-filling (Gd(III)) we find a reentrant low-spin state as Uff_{ff} is increased, for small values of Δf\Delta_f, which explains the recently reported apparent anomalous anti-ferromagnetic behaviour of Gd(III)-radical complexes. By varying Uff_{ff} we also observe a switch over in the ground state spin for other fillings . We have introduced a spin-orbit coupling scheme which goes beyond L-S or j-j coupling scheme and we find that spin-orbit coupling does not significantly alter the basic picture.Comment: 22 pages, 11 ps figure

    In-cell NMR characterization of the secondary structure populations of a disordered conformation of α-Synuclein within E. coli cells

    Get PDF
    α-Synuclein is a small protein strongly implicated in the pathogenesis of Parkinson’s disease and related neurodegenerative disorders. We report here the use of in-cell NMR spectroscopy to observe directly the structure and dynamics of this protein within E. coli cells. To improve the accuracy in the measurement of backbone chemical shifts within crowded in-cell NMR spectra, we have developed a deconvolution method to reduce inhomogeneous line broadening within cellular samples. The resulting chemical shift values were then used to evaluate the distribution of secondary structure populations which, in the absence of stable tertiary contacts, are a most effective way to describe the conformational fluctuations of disordered proteins. The results indicate that, at least within the bacterial cytosol, α-synuclein populates a highly dynamic state that, despite the highly crowded environment, has the same characteristics as the disordered monomeric form observed in aqueous solution
    corecore