51 research outputs found

    Aggregation of chromosome axis proteins on the chromatin and in the nucleoplasm of Brassica oleracea meiocytes

    Get PDF
    Meiotic recombination is essential for the generation of genetic diversity in natural and breeding context. The chromosome axis comprises cohesin, HORMA-domain containing proteins and coiled coil proteins and is crucial for the establishment of meiotic recombination. These proteins form a complex during meiosis of Brassica oleracea but information about their respective localisation and dynamic on meiotic chromosomes remain sparse. Our study reveals that the HORMA-protein ASY1 aggregates on the chromatin and forms domains of high and low abundances. The regions enriched for ASY1 are also highly enriched for the axis proteins ASY3, SMC3 and SCC3, although to varying degrees between leptotene and pachytene stages. At later stages, when most DNA double strand breaks are repaired and the chromosome axis disassemble, ASY1, ASY3, SCC3 and SMC3 co-localise and form large aggregates on the discontinuous axis structures. As the axis structures reduce in length, we found that all four axis proteins relocalise in the nucleoplasm and further aggregates. Moreover, we found that ZYP1, the transverse filament of the synaptonemal complex, forms numerous chromosomic aggregates that are sometimes associated with MLH1 and can form ectopic synaptic interactions. Overall, our study indicates that axis proteins have a high propensity to aggregate. This property is important for assembling the chromosome axis but the association of axis proteins with the chromatin must be tightly regulated to limit polycomplex formation

    Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination

    Get PDF
    During meiosis, homologous chromosomes undergo crossover recombination, which creates genetic diversity and balances homolog segregation. Despite these critical functions, crossover frequency varies extensively within and between species. Although natural crossover recombination modifier loci have been detected in plants, causal genes have remained elusive. Using natural Arabidopsis thaliana accessions, we identified two major recombination quantitative trait loci (rQTLs) that explain 56.9% of crossover variation in ColxLer F2 populations. We mapped rQTL1 to semidominant polymorphisms in HEI10, which encodes a conserved ubiquitin E3 ligase that regulates crossovers. Null hei10 mutants are haploinsufficient, and, using genome-wide mapping and immunocytology, we show that transformation of additional HEI10 copies is sufficient to more than double euchromatic crossovers. However, heterochromatic centromeres remained recombination-suppressed. The strongest HEI10-mediated crossover increases occur in subtelomeric euchromatin, which is reminiscent of sex differences in Arabidopsis recombination. Our work reveals that HEI10 naturally limits Arabidopsis crossovers and has the potential to influence the response to selection

    HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis.

    Get PDF
    Meiotic crossovers are tightly restricted in most eukaryotes, despite an excess of initiating DNA double-strand breaks. The majority of plant crossovers are dependent on class I interfering repair, with a minority formed via the class II pathway. Class II repair is limited by anti-recombination pathways; however, similar pathways repressing class I crossovers have not been identified. Here, we performed a forward genetic screen in Arabidopsis using fluorescent crossover reporters to identify mutants with increased or decreased recombination frequency. We identified HIGH CROSSOVER RATE1 (HCR1) as repressing crossovers and encoding PROTEIN PHOSPHATASE X1. Genome-wide analysis showed that hcr1 crossovers are increased in the distal chromosome arms. MLH1 foci significantly increase in hcr1 and crossover interference decreases, demonstrating an effect on class I repair. Consistently, yeast two-hybrid and in planta assays show interaction between HCR1 and class I proteins, including HEI10, PTD, MSH5 and MLH1. We propose that HCR1 plays a major role in opposition to pro-recombination kinases to restrict crossovers in Arabidopsis.Marie Curie International Training Network COMREC European Research Council (ERC) National Research Foundation of Korea Suh Kyungbae Foundatio

    The genetic and epigenetic landscape of the Arabidopsis centromeres.

    Get PDF
    Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used longread sequencing to generate the Col-CEN Arabidopsis thaliana genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support CENH3 occupancy and are densely DNA methylated, with satellite variants private to each chromosome. CENH3 preferentially occupies satellites that show least divergence and occur in higherorder repeats. The centromeres are invaded by ATHILA retrotransposons, which disrupt genetic and epigenetic organization. Centromeric crossover recombination is suppressed, yet low levels of meiotic DSBs occur that are regulated by DNA methylation. We propose that Arabidopsis centromeres are evolving via cycles of satellite homogenization and retrotransposon-driven diversification.BBSRC grants BB/S006842/1, BB/S020012/1 and BB/V003984/1

    A highly mutagenised barley (cv. Golden Promise) TILLING population coupled with strategies for screening-by-sequencing

    Get PDF
    Background:We developed and characterised a highly mutagenised TILLING population of the barley (Hordeum vulgare) cultivar Golden Promise. Golden Promise is the 'reference' genotype for barley transformation and a primary objective of using this cultivar was to be able to genetically complement observed mutations directly in order to prove gene function. Importantly, a reference genome assembly of Golden Promise has also recently been developed. As our primary interest was to identify mutations in genes involved in meiosis and recombination, to characterise the population we focused on a set of 46 genes from the literature that are possible meiosis gene candidates. Results:Sequencing 20 plants from the population using whole exome capture revealed that the mutation density in this population is high (one mutation every 154 kb), and consequently even in this small number of plants we identified several interesting mutations. We also recorded some issues with seed availability and germination. We subsequently designed and applied a simple two-dimensional pooling strategy to identify mutations in varying numbers of specific target genes by Illumina short read pooled-amplicon sequencing and subsequent deconvolution. In parallel we assembled a collection of semi-sterile mutants from the population and used a custom exome capture array targeting the 46 candidate meiotic genes to identify potentially causal mutations. Conclusions:We developed a highly mutagenised barley TILLING population in the transformation competent cultivar Golden Promise. We used novel and cost-efficient screening approaches to successfully identify a broad range of potentially deleterious variants that were subsequently validated by Sanger sequencing. These resources combined with a high-quality genome reference sequence opens new possibilities for efficient functional gene validation.Miriam Schreiber, Abdellah Barakate, Nicola Uzrek, Malcolm Macaulay, Adeline Sourdille, Jenny Morris, Pete E. Hedley, Luke Ramsay and Robbie Waug

    Optimizing care in osteoporosis: The Canadian quality circle project

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the Osteoporosis Canada 2002 Canadian guidelines provided evidence based strategies in preventing, diagnosing, and managing this condition, publication and distribution of guidelines have not, in and of themselves, been shown to alter physicians clinical approaches. We hypothesize that primary care physicians enrolled in the Quality Circle project would change their patient management of osteoporosis in terms of awareness of osteoporosis risk factors and bone mineral density testing in accordance with the guidelines.</p> <p>Methods</p> <p>The project consisted of five Quality Circle phases that included: 1) Training & Baseline Data Collection, 2) First Educational Intervention & First Follow-Up Data Collection 3) First Strategy Implementation Session, 4) Final Educational Intervention & Final Follow-up Data Collection, and 5) Final Strategy Implementation Session. A total of 340 circle members formed 34 quality circles and participated in the study. The generalized estimating equations approach was used to model physician awareness of risk factors for osteoporosis and appropriate utilization of bone mineral density testing pre and post educational intervention (first year of the study). Odds ratios (OR) and 95% confidence intervals (95% CI) were calculated.</p> <p>Results</p> <p>After the 1<sup>st </sup>year of the study, physicians' certainty of their patients' risk factor status increased. Certainty varied from an OR of 1.4 (95% CI: 1.1, 1.8) for prior vertebral fracture status to 6.3 (95% CI: 2.3, 17.9) for prior hip fracture status. Furthermore, bone mineral density testing increased in high risk as compared with low risk patients (OR: 1.4; 95% CI: 1.2, 1.7).</p> <p>Conclusion</p> <p>Quality Circle methodology was successful in increasing both physicians' awareness of osteoporosis risk factors and appropriate bone mineral density testing in accordance with the 2002 Canadian guidelines.</p

    CTAB DNA Extraction and Genotyping-by-Sequencing to Map Meiotic Crossovers in Plants

    No full text
    Reciprocal DNA crossovers between chromosomes form new allelic combinations and contribute to the formation of novel genetic diversity. Crossovers are formed during meiosis of germ cells and these recombination events have influenced plant genome evolution and are used during breeding to create improved plant varieties. Meiotic crossovers are not uniformly formed across the genome but instead occur in regions with low nucleosome density. The recombination landscape differs between the model plant organism Arabidopsis thaliana and crops such as rice and maize. Genotyping-by-sequencing is a technique that can detect crossover location and provide information on the recombination landscape genome-wide. This technique can be used to compare crossover position between ecotypes, species, and mutant lines to gain information on factors controlling meiotic recombination. In this protocol, we describe the steps to purify DNA from plant tissue, prepare 96 DNA libraries in parallel and perform quality control before next-generation sequencing
    corecore