34 research outputs found

    Identification of novel candidate genes involved in individual antidepressant treatment response

    Get PDF

    Time-dependent metabolomic profiling of Ketamine drug action reveals hippocampal pathway alterations and biomarker candidates

    Get PDF
    Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has fast-acting antidepressant activities and is used for major depressive disorder (MDD) patients who show treatment resistance towards drugs of the selective serotonin reuptake inhibitor (SSRI) type. In order to better understand Ketamine's mode of action, a prerequisite for improved drug development efforts, a detailed understanding of the molecular events elicited by the drug is mandatory. In the present study we have carried out a timedependent hippocampal metabolite profiling analysis of mice treated with Ketamine. After a single injection of Ketamine, our metabolomics data indicate time-dependent metabolite level alterations starting already after 2 h reflecting the fast antidepressant effect of the drug. In silico pathway analyses revealed that several hippocampal pathways including glycolysis/gluconeogenesis, pentose phosphate pathway and citrate cycle are affected, apparent by changes not only in metabolite levels but also connected metabolite level ratios. The results show that a single injection of Ketamine has an impact on the major energy metabolism pathways. Furthermore, seven of the identified metabolites qualify as biomarkers for the Ketamine drug response

    Hippocampal Homer1 Levels Influence Motivational Behavior in an Operant Conditioning Task

    Get PDF
    Loss of motivation and learning impairments are commonly accepted core symptoms of psychiatric disorders such as depression and schizophrenia. Reward-motivated learning is dependent on the hippocampal formation but the molecular mechanisms that lead to functional incentive motivation in this brain region are still largely unknown. Recent evidence implicates neurotransmission via metabotropic glutamate receptors and Homer1, their interaction partner in the postsynaptic density, in drug addiction and motivational learning. As previous reports mainly focused on the prefrontal cortex and the nucleus accumbens, we now investigated the role of hippocampal Homer1 in operant reward learning in the present study. We therefore tested either Homer1 knockout mice or mice that overexpress Homer1 in the hippocampus in an operant conditioning paradigm. Our results show that deletion of Homer1 leads to a diverging phenotype that either displays an inability to perform the task or outstanding hyperactivity in both learning and motivational sessions. Due to the apparent bimodal distribution of this phenotype, the overall effect of Homer1 deletion in this paradigm is not significantly altered. Overexpression of hippocampal Homer1 did not lead to a significantly altered learning performance in any stage of the testing paradigm, yet may subtly contribute to emerging motivational deficits. Our results indicate an involvement of Homer1-mediated signaling in the hippocampus in motivation-based learning tasks and encourage further investigations regarding the specific molecular underpinnings of the phenotypes observed in this study. We also suggest to cautiously interpret the results of this and other studies regarding the phenotype following Homer1 manipulations in animals, since their behavioral phenotype appears to be highly diverse. Future studies would benefit from larger group sizes that would allow splitting the experimental groups in responders and non-responders

    Genetic association of human Corticotropin-Releasing Hormone Receptor 1 (CRHR1) with Internet gaming addiction in Korean male adolescents

    Get PDF
    Background The number of people with Internet gaming addiction (IGA) is increasing around the world. IGA is known to be associated with personal characteristics, psychosocial factors, and physiological factors. However, few studies have examined the genetic factors related to IGA. This study aimed to investigate the association between IGA and stress-related genetic variants. Methods This cross-sectional study was conducted with 230 male high school students in a South Korean city. We selected five stress-related candidate genes: DAT1, DRD4, NET8, CHRNA4, and CRHR1. The DAT1 and DRD4 genes were genotyped by polymerase chain reaction, and the NET8, CHRNA4, and CRHR1 genes were genotyped by pyrosequencing analysis. We performed a Chi-square test to examine the relationship of these five candidate genes to IGA. Results Having the AA genotype and the A allele of the CRHR1 gene (rs28364027) was associated with higher odds of belonging to the IGA participant group (p = .016 and p = .021, respectively) than to the non-IGA group. By contrast, the DAT1, DRD4, NET8, and CHRNA4 gene polymorphisms showed no significant difference between the IGA group and control group. Conclusions These results indicate that polymorphism of the CRHR1 gene may play an important role in IGA susceptibility in the Korean adolescent male population. These findings provide a justification and foundation for further investigation of genetic factors related to IGA

    Interplay between diet-induced obesity and chronic stress in mice: potential role of FKBP51

    No full text
    While it is known that stress promotes obesity, the effects of stress within an obesogenic context are not so clear and molecular targets at the interface remain elusive. The FK506-binding protein 51 (FKBP51, gene: Fkbp5) has been identified as a target gene implicated in the development of stress-related psychiatric disorders and is a possible candidate for involvement in stress and metabolic regulation. The aims of the current study are to investigate the interaction between chronic stress and an obesogenic context and to additionally examine whether FKBP51 is involved in this interaction. For this purpose, male C57BL/6 mice were exposed to a high-fat diet for 8 weeks before being challenged with chronic social defeat stress. Herein, we demonstrate that chronic stress induces hypophagia and weight loss, ultimately improving features arising from an obesogenic context, including glucose tolerance and levels of insulin and leptin. We show that Fkbp5 expression is responsive to diet and stress in the hypothalamus and hippocampus respectively. Furthermore, under basal conditions, higher levels of hypothalamic Fkbp5 expression were related to increased body weight gain. Our data indicate that Fkbp5 may represent a novel target in metabolic regulation

    Early-life stress-induced anxiety-related behavior in adult mice partially requires forebrain corticotropin-releasing hormone receptor 1.

    No full text
    Early-life stress may lead to persistent changes in central corticotropin-releasing hormone (CRH) and the CRH receptor 1 (CRHR1) system that modulates anxiety-related behavior. However, it remains unknown whether CRH–CRHR1 signaling is involved in earlylife stress-induced anxiety-related behavior in adult animals. In the present study, we used conditional forebrain CRHR1 knockout (CRHR1-CKO) mice and examined the potential role of forebrain CRHR1 in the anxiogenic effects of early-life stress. As adults, wildtype mice that received unstable maternal care during the first postnatal week showed reduced body weight gain and increased anxiety levels in the open field test, which were prevented in stressed CRHR1-CKO mice. In the light–dark box test, control CRHR1- CKO mice were less anxious, but early-life stress increased anxiety levels in both wild-type and CRHR1-CKO mice. In the elevated plus maze test, early-life stress had only subtle effects on anxiety-related behavior. Moreover, early-life stress did not alter the basal home cage activity and gene expression levels of key hypothalamic-pituitary-adrenal axis regulators in adult wild-type and CRHR1- CKO mice, but enhanced neuroendocrine reactivity to acute immobilization stress in CRHR1-CKO mice. Our findings highlight the importance of forebrain CRHR1 in modulating some of the anxiogenic effects of early-life stress, and suggest that other neural circuits are also involved in the programming effects of early-life stress on anxiety-related behavior

    Evidence supporting the match/mismatch hypothesis of psychiatric disorders

    No full text
    Chronic stress is one of the predominant environmental risk factors for a number of psychiatric disorders, particularly for major depression. Different hypotheses have been formulated to address the interaction between early and adult chronic stress in psychiatric disease vulnerability. The match/mismatch hypothesis of psychiatric disease states that the early life environment shapes coping strategies in a manner that enables individuals to optimally face similar environments later in life. We tested this hypothesis in female Balb/c mice that underwent either stress or enrichment early in life and were in adulthood further subdivided in single or group housed, in order to provide aversive or positive adult environments, respectively. We studied the effects,of the environmental manipulation on anxiety-like, depressive-like and sociability behaviors and gene expression profiles. We show that continuous exposure to adverse environments (matched condition) is not necessarily resulting in an opposite phenotype compared to a continuous supportive environment (matched condition). Rather, animals with mismatched environmental conditions behaved differently from animals with matched environments on anxious, social and depressive like phenotypes. These results further support the match/mismatch hypothesis and illustrate how mild or moderate aversive conditions during development can shape an individual to be optimally adapted to similar conditions later in life. (C) 2014 Elsevier B.V. and ECNP. All rights reserved
    corecore