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Time-dependent metabolomic profiling of Ketamine drug
action reveals hippocampal pathway alterations and
biomarker candidates
K Weckmann1, C Labermaier1, JM Asara2, MB Müller1,3 and CW Turck1

Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has fast-acting antidepressant activities and is used for major
depressive disorder (MDD) patients who show treatment resistance towards drugs of the selective serotonin reuptake inhibitor
(SSRI) type. In order to better understand Ketamine’s mode of action, a prerequisite for improved drug development efforts, a
detailed understanding of the molecular events elicited by the drug is mandatory. In the present study we have carried out a time-
dependent hippocampal metabolite profiling analysis of mice treated with Ketamine. After a single injection of Ketamine, our
metabolomics data indicate time-dependent metabolite level alterations starting already after 2 h reflecting the fast antidepressant
effect of the drug. In silico pathway analyses revealed that several hippocampal pathways including glycolysis/gluconeogenesis,
pentose phosphate pathway and citrate cycle are affected, apparent by changes not only in metabolite levels but also connected
metabolite level ratios. The results show that a single injection of Ketamine has an impact on the major energy metabolism
pathways. Furthermore, seven of the identified metabolites qualify as biomarkers for the Ketamine drug response.
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INTRODUCTION
Psychiatric diseases including major depressive disorder (MDD)
have a high morbidity and constitute an ever increasing burden
for societies.1 At present, most clinically used antidepressants are
targeting monoaminergic reuptake mechanisms.2 However, a
limited efficacy and a delayed onset of therapeutic response
combined with several side effects make them less than ideal
drugs. Approximately one-third of patients are suffering from
treatment-resistant depression and do not respond to commonly
used antidepressants.3 Reasons for the delayed therapeutic effect
and treatment-resistant depression remain mysterious. To
improve antidepressant drug efficacy, one line of research has
focused on the N-methyl-D-aspartate receptor (NMDAR) and its
signaling pathways, with the goal to manipulate glutamatergic
neurotransmission, which has been associated with MDD patho-
biology. Ketamine targets the glutamatergic system by blocking
the NMDAR with profound effects on downstream signaling
cascades.4–7 Unlike selective serotonin reuptake inhibitor (SSRI)
medications that result in a delayed onset of therapeutic response,
Ketamine improves depressive symptoms within hours and is
particularly effective in patients suffering from treatment-resistant
depression.8–16

Studies on Ketamine’s mode of action in rodents have shown
antidepressant-like effects in several behavioral tests including
Learned Helplessness, Forced Swim Test (FST), Chronic Mild Stress
and Novelty Suppressed Feeding Test.17–22 On the molecular
level, Ketamine activates the mammalian target of rapamycin sig-
naling pathway, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

receptors and brain-derived neurotrophic factor synthesis, ulti-
mately resulting in an elevated number of dendritic spines.23

Psychomimetic side effects have so far prevented Ketamine’s
routine use in the clinic as a first-line drug. In order to develop
alternative fast-acting drugs with a similar mode of action on the
glutamatergic system, but with fewer side effects, a detailed
understanding of the molecular events elicited by Ketamine
treatment is essential.
The hippocampus was chosen as a relevant brain region for

studying MDD molecular pathways.24–28 Decreased hippocampal
volumes during acute depressive episodes, observed with
magnetic resonance imaging analyses, are believed to be involved
in the pathobiology of MDD.29–32 These changes are present
during an acute episode of MDD and are already apparent during
the first depressive episode.33 Possible causes of the hippocampal
volume reduction include neuronal cell loss,34 pruning of apical
dendrites in the CA3 subregion, decreased dentate gyrus
neurogenesis35 and a loss of glial cells.36 Antidepressant treatment
can reverse these effects and hippocampal volume decrease
seems to be less prominent or even absent in phases of
remission.30 Patients suffering from MDD show impairments in
their memory, which is highly dependent on the hippocampus,37

and there is a dysregulated connectivity network of several brain
regions in MDD including the hippocampus.38

Alterations affecting the metabolome are a reflection of
modified pathway activities in response to drug treatment.39,40

In the present study, C57BL/6 mice were treated with a single
injection of Ketamine with the aim of identifying hippocampal
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cellular pathway alterations and biomarker candidates with the
help of a sensitive metabolomics platform.41

MATERIALS AND METHODS
Animals and Ketamine treatment
Eight-week-old male C57BL/6 mice (Charles River Laboratories, Maastricht,
the Netherlands) were first singly housed for 2 weeks under standard
conditions (12-h light/dark cycle, lights on at 0600 hours, room
temperature 23 ± 2 °C, humidity 60%, tap water and food ad libitum) in
the facilities of the Max Planck Institute of Psychiatry. After habituation, the
mice were treated intraperitoneally with S-Ketamine (3 mg kg− 1, Pfizer,
Karlsruhe, Germany) or vehicle (0.9% saline solution). Two, fourteen,
twenty-four and seventy-two hours after Ketamine treatment, an FST was
performed measuring the antidepressant-like behavior and afterwards
animals were killed by an overdose of isoflurane (Forene, Abbott,
Wiesbaden, Germany). The animals were perfused with 0.9% ice-cold
saline solution. Mice were decapitated and their brains were harvested and
dissected. Total hippocampi were shock-frozen in liquid nitrogen and
stored at − 80 °C until further analysis. The experiments were performed in
accordance with the European Communities Council Directive 86/609/EEC.
The protocols were approved by the committee for the Care and Use of
Laboratory Animals of the Government of Upper Bavaria, Germany.

Forced Swim Test
Each mouse was put into a 2-l glass beaker (diameter: 13 cm, height:
24 cm) filled with tap water (21 ± 1 °C) to a height of 15 cm, so that the
mouse could not touch the bottom with its hind paws or tail. Testing
duration was 6min and at the end of the test the animals were
immediately dried with a towel and returned to their home cage. The
immobility time was scored 2 h (Ketamine-treated animals: n=33, vehicle-
treated animals: n= 33), 14 h (Ketamine-treated animals: n= 31, vehicle-
treated animals: n= 29), 24 h (Ketamine-treated animals: n= 33, vehicle-
treated animals: n= 33) and 72 h (Ketamine-treated animals: n=31,
vehicle-treated animals: n= 29) after Ketamine treatment by an experi-
enced observer, blind to the condition of the animals.

Isolation of membrane-associated proteins
Membrane-associated proteins were prepared by repeated tissue homo-
genization and extraction of nonmembrane proteins and solubilization
with sodium dodecyl sulfate (SDS). Hippocampi were homogenized for
30 s in 1 ml of 2 M NaCl, 10 mM HEPES/NaOH, pH 7.4, 1 mM EDTA
containing protease inhibitor cocktail Tablets ‘cOmplete’ (Roche Diagnos-
tics, Mannheim, Germany), then incubated for 10min and homogenized
again for 30 s and further with a ultrasonicator for 3 × 10 s on ice. The
homogenates were centrifuged at 16 100 g at 4 °C for 20min. The pellets
were rehomogenized in 1 ml of 0.1 M Na2CO3 and 1mM EDTA, pH 11.3,
mixed at 4 °C for 30min and collected by centrifugation (16 100 g at 4 °C
for 20min). Subsequently, the pellets were extracted with 5 M urea,
100mM NaCl, 10 mM HEPES, pH 7.4 and 1mM EDTA and then washed twice
with 0.1 M Tris/HCl, pH 7.6. The pellets were solubilized in 50 μl of 2% SDS,
50mM dithiothreitol and 0.1 M Tris/HCl, pH 7.6, at 90 °C for 1 min and
stored at − 20 °C until further analysis.

Western blotting
Hippocampal membrane-associated proteins from 8-week-old male
C57BL/6 mice treated with Ketamine for 2 h (Ketamine-treated animals:
n= 4, vehicle-treated animals: n=5), 14 h (Ketamine-treated animals: n= 5,
vehicle-treated animals: n= 4), 24 h (Ketamine-treated animals: n= 5,
vehicle-treated animals: n= 5) and 72 h (Ketamine-treated animals: n= 5,
vehicle-treated animals: n=3) were fractionated by SDS-polyacrylamide
gel electrophoresis with 12% separating gels and western blotting was
performed based on standard protocols. After electrophoresis, proteins
were transferred to polyvinylidene difluoride membranes (Immobilon-P,
Millipore, Billerica, MA, USA). The primary antibody was against the subunit
A of the succinate dehydrogenase complex (Anti-SDHA, 1:200, sc98253,
Santa Cruz Biotechnology, Dallas, TX, USA). An anti-rabbit ECL horseradish
peroxidase-linked secondary antibody (1:10 000; NA934, GE Healthcare Life
Sciences, Little Chalfont, Buckinghamshire, UK) was used. The densito-
metric analyses were performed with the Image Lab software (Bio-Rad
Laboratories, Munich, Germany).

Targeted metabolomics analysis
Five hippocampal tissues per treatment and time point were homogenized
(2min × 1200min− 1, homogenizer PotterS, Sartorius, Göttingen, Germany)
in 30-fold ice-cold 80% methanol. Samples were centrifuged (14 000 g,
10min, 4 °C) and the supernatants were incubated on dry ice. Afterwards,
the pellets were incubated in sixfold ice-cold 80% methanol and then
combined with the previous supernatants. The metabolite extracts were
vortexed, centrifuged (14 000 g, 10min, 4 °C), lyophilized and then stored
at − 80 °C until further analysis. Samples were resuspended using 20 μl
liquid chromatography-mass spectrometry grade water. Ten microliters
were injected and analyzed using a 5500 QTRAP triple quadrupole mass
spectrometer (AB/SCIEX, Framingham, MA, USA) coupled to a Prominence
UFLC high-performance liquid chromatography system (Shimadzu,
Columbia, MD, USA) via selected reaction monitoring of a total of 254
endogenous water-soluble metabolites for steady-state analyses of
samples. Samples were delivered to the mass spectrometer via normal
phase chromatography using a 4.6-mm i.d × 10 cm Amide Xbridge HILIC
column (Waters, Milford, MA, USA) at 350 μl min− 1. Gradients were run
starting from 85% buffer B (high-performance liquid chromatography
grade acetonitrile) to 42% B from 0 to 5 min; 42% B to 0% B from 5 to
16min; 0% B was held from 16 to 24min; 0% B to 85% B from 24 to 25min;
85% B was held for 7 min to re-equilibrate the column. Buffer A comprised
20mM ammonium hydroxide/20 mM ammonium acetate (pH= 9.0) in 95:5
water:acetonitrile. Some metabolites were targeted in both positive and
negative ion modes for a total of 285 selected reaction monitoring
transitions using positive/negative polarity switching. Electrospray ioniza-
tion voltage was +4900 V in positive ion mode and − 4500 V in negative ion
mode. The dwell time was 4ms per selected reaction monitoring transition
and the total cycle time was 1.89 s. Approximately 9–12 data points were
acquired per detected metabolite. Peak areas from the total ion current for
each metabolite-selected reaction monitoring transition were integrated
using the MultiQuant v2.0 software (AB/SCIEX). Animals from the same
cohort were used for all metabolomic analyses.

Statistics and data analyses
Identification of significant metabolite alterations. Metabolite intensities
were median-normalized and auto-scaled for statistical analysis. Significant
metabolite level changes 2, 14, 24 and 72 h upon Ketamine treatment were
identified by multivariate Partial Least Squares—Discriminant Analyses
(PLS-DA) and high-dimensional feature selection significance analysis of
microarrays (and metabolites; SAM) using MetaboAnalyst (http://www.
metaboanalyst.ca).42–44 The quality of the PLS-DA models was assessed for
R2, Q2 and accuracy with variable influence of projection (VIP) score⩾ 1.0
and for SAM with q⩽ 0.1 and false discovery rate ⩽ 0.1. We improved
robustness of our data analyses and increased confidence in significantly
altered metabolites and enriched pathways by only considering the
overlap between the two different statistical methods.

Identification of significantly enriched pathways. Pathway analyses were
performed for each time point using MetaboAnalyst (http://www.
metaboanalyst.ca) applying a hypergeometric algorithm for over-
representation analysis and relative-betweeness centrality for pathway
topology analysis.43,45,46 Pathways were considered affected if they were
significantly enriched (PHolm-corrected⩽ 0.1) for all significantly altered
metabolites of an individual time point.

Calculation of metabolite pair ratios. The median-normalized metabolite
intensities before auto-scaling of selected pairs of metabolites were used
to calculate metabolite ratios. For statistical analyses, Student’s t-test was
performed by using the metabolite ratio of interest for each Ketamine- and
vehicle-treated animal (for example, metabolite x/metabolite y of one
Ketamine-treated animal) calculated by dividing the metabolite intensity of
metabolite x by the intensity of metabolite y for each time point. The final
metabolite ratio of interest (for example, metabolite x/metabolite y for all
Ketamine- and vehicle-treated animals) was then calculated by dividing
the average metabolite intensities of all Ketamine-treated animals by the
average metabolite intensities of all vehicle-treated animals.

Identification of metabolite biomarker candidates. Antidepressant treat-
ment hippocampal metabolite biomarker candidates were detected by
applying multivariate PLS-DA models taking the VIP scores (VIP score⩾ 1.0)
and SAM with q⩽ 0.1 and false discovery rate⩽ 0.1 into account. The
quality of the PLS-DA models was assessed in terms of R2, Q2 and accuracy.
Metabolites qualified as biomarker candidates if they had a consistent VIP
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score⩾ 1.0 for the 2-, 14- and 24-h time points for which good and robust
PLS-DA models had been determined. In addition, they required q⩽ 0.1 for
at least one of the time points.

RESULTS
C57BL/6 wild-type mice were assessed at different time points
with regard to antidepressant-like behavior using the FST after
receiving a single injection of Ketamine (3 mg kg− 1;
Supplementary Figure 1). In order to avoid any behavioral
habituation, independent groups of mice were examined for their
FST immobility time. A two-way analysis of variance showed no
statistically significant interaction between the effects of treat-
ment and different time points on the FST immobility time. The
main effects analysis showed a significant reduction in FST
immobility time when comparing Ketamine with vehicle-treated
animals and significant alterations for the different time points.
Therefore, no treatment effects for the individual time points were
examined. A Tukey’s honest significant difference test revealed a
statistically significant difference in FST immobility time between
the 2h (Ketamine-treated animals: n= 33, vehicle-treated animals:
n= 33), 14 h (Ketamine-treated animals: n= 31, vehicle-treated
animals: n= 29) and 72 h (Ketamine-treated animals: n= 31,
vehicle-treated animals: n= 29) time points, between the 14-
and 24-h (Ketamine-treated animals: n= 33, vehicle-treated
animals: n= 33) time points and between the 24- and 72-h time
points. On the basis of these results, we chose five mice per time
point and group for the metabolomic analyses.
After a single injection of Ketamine, a total of 226, 218, 227 and

221 metabolites were quantified in the hippocampus for the 2-,
14-, 24- and 72-h time points, respectively (Supplementary Table
1).
The metabolite profiles separated Ketamine from vehicle-

treated mice using multivariate PLS-DA for all time points
(Figure 1). The quality criteria (Supplementary Figure 2A) of PLS-
DA models were assessed for R2, Q2 and accuracy values. They
indicate good and robust models, with the exception of the 72-h
time point. The weak PLS-DA model of the 72-h time point can
result in false-positives. Nevertheless, the results were included as
they are another indication of Ketamine’s fast antidepressant-like
effect on the metabolome.
For the identification of metabolite changes characteristic for

group separation, the VIP parameter was used. The VIP indicates
the importance of each metabolite for group separation. Only
metabolites with VIP values ⩾ 1.0 were selected and used for
further data analysis. To increase the robustness of our analyses,
we additionally combined the PLS-DA with a high-dimensional
feature selection, SAM analysis, to obtain a complete list of
metabolites for each time point that significantly contribute to
Ketamine drug action (Supplementary Table 2). Two hours after a
single injection of Ketamine 45 metabolite levels were significantly
altered (Supplementary Table 2A), with 21 metabolites reduced
and 24 metabolites upregulated in Ketamine compared with
vehicle-treated mice (Supplementary Table 2A). For the 14- and
24-h time points, 22 and 11 metabolites, respectively, were
detected at lower levels (Supplementary Tables 2B and 2C). In
agreement with the observation that the PLS-DA model of the 72-
h time point is not robust, no significant metabolite alterations
were found 72 h after Ketamine treatment.
Next, we interrogated the significantly altered metabolites to

delineate affected hippocampal pathways (Table 1). Citrate cycle,
glycine, serine and threonine metabolism and pyrimidine
metabolism were significantly enriched 2 h after a single injection
of Ketamine. Pentose phosphate and glycolysis/gluconeogenesis
pathways were significantly enriched for the 14-h time point
(Table 1).
Interestingly, based on KEGG database information all five

pathways are interconnected by shared metabolites

(Supplementary Figure 3). Several previous analyses by us and
others have also shown an involvement of the citrate cycle in
psychiatric phenotypes.47–49 The citrate cycle consists of a series of
biochemical reactions to generate high levels of energy through
the connected oxidative phosphorylation (OXPHOS) pathway. In
our analysis we show for the first time that Ketamine has an
impact on the citrate cycle by altering several of its metabolite
levels. Already 2 h after a single injection of Ketamine, thiamine
pyrophosphate (2 h: FC = 1.43 (data not shown)), acetyl-CoA (2 h:
FC= 1.49) and succinate (2 h: FC = 1.96) levels were significantly
increased. Succinate-CoA (2 h: FC= 1.44) showed a high, but not
significant, FC 2 h after Ketamine treatment. Fumarate (2 h:
FC = 0.79) levels were significantly reduced 2 h after Ketamine
injection and malate levels (2 h: FC = 0.82, 14 h: FC = 0.82) were
significantly decreased for the 2- and 14-h time points. Isocitrate
(2 h: FC = 0.64) tended to be downregulated and citrate (2 h:
FC = 0.68) levels were lower, albeit with not a significant FC 2 h
after a single injection of Ketamine. Oxaloacetate (2 h: FC = 1.17)
and alpha-ketoglutarate (2 h: FC = 0.99) levels were unchanged
(Figure 2a and Supplementary Table 2). Selected pairs of
metabolite concentrations (metabolite ratios) can indicate altera-
tions in enzyme activity or expression rate.50 Metabolite ratios of
the citrate cycle were calculated (Figure 2a and Supplementary
Figure 4). The ratios are indicated by boxes, whereby each box
represents a time point (from left to right 2, 14, 24 and 72 h).
Significant metabolite ratio differences or trends are illustrated in
pink (increased ratio) and black (decreased ratio). The citrate/
acetyl-CoA ratio (2 h: ratio = 0.46) is significantly decreased 2 h
after Ketamine treatment. Alpha-ketoglutarate/isocitrate metabo-
lite ratios (2 h: ratio = 1.56, 24 h: ratio = 1.63) tended to be
increased for the 2- and 24-h time points and the fumarate/
succinate ratio (2 h: ratio = 0.40, 14 h: ratio = 0.55) tended to be
lower at 2 h and was significantly decreased at 14 h after a single
injection of Ketamine (Figure 2a and Supplementary Figure 4).
Subunit A of the SDHA complex catalyzes the succinate to
fumarate reaction as part of the citrate cycle. We therefore
investigated whether this could be caused by altered SDHA
protein levels following drug treatment. Indeed, we found such a
difference when comparing hippocampal protein extracts from
Ketamine- and vehicle-treated mice. Western blot analyses
indicated that at the 2-h (Ketamine-treated animals: n= 4,
vehicle-treated animals: n= 5; FC= 1.81) and 24-h (Ketamine-
treated animals: n= 5, vehicle-treated animals: n= 5; FC = 1.99)
time points a significant upregulation of SDHA protein can be
observed upon Ketamine treatment (Figure 2b).
As the citrate cycle produces energy equivalents in form of GTP

and NADH as well as ultimately ATP through complex V of the
OXPHOS pathway, we analyzed the GTP, NADH and ATP levels
upon Ketamine treatment (Figure 2c and e). GTP levels were
significantly increased at the 2-h and downregulated at the 24-h
time points (Figure 2c). Metabolite levels tended to be upregu-
lated at 14 h for NADH (Figure 2d). ATP levels tended to be
increased 14 h in Ketamine- compared with vehicle-treated mice
and were significantly decreased at the 24-h time point
(Figure 2e).
The glycolysis/gluconeogenesis pathway was also enriched

upon Ketamine treatment. Almost all quantified metabolites were
significantly altered 14 h after a single injection of Ketamine
(Figure 3a). Glucose-6-phosphate (14 h: FC = 0.53), fructose-6-
phosphate (14 h: FC= 0.40), fructose-1,6-bisphosphate (14 h: FC=
0.58) and dihydroxy-acetone-phosphate (14 h: FC = 0.24) were
significantly downregulated. In contrast, 3-phosphoglycerate (2 h:
FC = 1.75, 14 h: FC = 2.02) was significantly upregulated at the 2-
and 14-h time points; phosphoenolpyruvate (2 h: FC = 1.75) levels
were found to be significantly upregulated 2 h after Ketamine
treatment and pyruvate was unchanged. Furthermore, comparing
the FCs, q-values and VIP scores of all metabolites of the glycolysis
pathway, we were able to show that with the exception of 3-
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phosphoglycerate and phosphoenolpyruvate, all metabolites
showed the same pattern (Figure 3b). We also calculated the
metabolite ratios for the glycolytic pathway (Figure 3a and
Supplementary Figure 4). The fructose-6-phosphate/glucose-6-
phosphate ratio (14 h: ratio = 1.64) tended to be elevated 14 h
after Ketamine treatment. The fructose-1,6-phosphate/fructose-6-
phosphate metabolite ratio (72 h: ratio = 0.48) showed a significant
decrease at the 72-h time point. However, as the PLS-DA resulted
in a weak model for this time point, the decreased fructose-1,6-
phosphate/fructose-6-phosphate metabolite ratio might be a
false-positive. The glyceraldehyde-3-phosphate/dihydroxy-ace-
tone-phosphate ratio (14 h: ratio = 0.84) was significantly lower
and the 3-phosphoglycerate/glyceraldehyde-3-phosphate ratio
(14 h: ratio = 4.51, 24 h: ratio = 2.37) was significantly increased
14 h after a single injection of Ketamine and tended to be

upregulated for the 24-h time point. The 3-phosphoglycerate/
phosphoenolpyruvate (14 h: ratio = 0.47) and pyruvate/phosphoe-
nolpyruvate ratios (2 h: ratio = 0.61) were either significantly or
tended to be lower, respectively (Figure 3a and Supplementary
Figure 4).
We next attempted to identify metabolite biomarkers for the

Ketamine treatment response. PLS-DA models can be used for
biomarker discovery taking the VIP scores into account. When PLS-
DA for the 2-, 14-, 24- and 72-h time points were assessed for
quality criteria (Supplementary Figure 2 A), all R2, Q2 and accuracy
values indicate good and robust models, with the exception of the
72-h time point. On the basis of these results, we chose
metabolites that are important and stable contributors for group
separation with a consistent VIP score ⩾ 1.0 for the 2-, 14- and 24-
h time points and with q⩽ 0.1 for at least one of the time points.

∆∆ Ketamine-treated

++ Vehicle-treated

Score plot Score plot

Score plotScore plot

Figure 1. Multivariate partial least squares-discriminant analysis (PLS-DA) of (a) 2-h, (b) 14-h, (c) 24-h and (d) 72-h time course comparison after
a single injection of Ketamine (3mg kg-1) or vehicle using all quantified metabolites for each time point. All R2, Q2 and accuracy values
indicate good (2 h: R2= 0.99, Q2= 0.60, accuracy= 1.0; 14 h: R2= 1.0, Q2= 0.63, accuracy= 1.0) and robust (24 h: R2= 0.92, Q2= 0.52,
accuracy= 0.8) models with the exception of the 72-h time point (R2= 1.0, Q2= 0.29, accuracy= 0.6). N= 5 mice per group and time point. See
also Supplementary Figure 2.

Time-dependent metabolomic profiling of Ketamine drug action
K Weckmann et al

4

Translational Psychiatry (2014), 1 – 9 © 2014 Macmillan Publishers Limited



This resulted in seven metabolite biomarker candidates for
Ketamine drug action (Supplementary Figure 2B).

DISCUSSION
Metabolomics provides an analytical tool for the identification of
pathway alterations and drug targets.39,51–54 To our knowledge,
this is the first study that identifies metabolite alterations, affected
pathways and biomarker candidates for the Ketamine treatment
response in mice.
Our results indicate significant metabolite level and metabolite

ratio changes that are part of several pathways including citrate
cycle, glycine, serine and threonine metabolism, pyrimidine
metabolism, pentose phosphate pathway and glycolysis/gluco-
neogenesis (Table 1). Mitochondrial abnormalities including
alterations in energy metabolism such as citrate cycle and
glycolysis have previously been implicated in the pathobiology
of affective disorders.47–49,55–60 We observed several metabolite
level and metabolite ratio changes of the citrate cycle already 2 h
after Ketamine treatment (fumarate, malate, citrate and isocitrate,
alpha-ketoglutarate/isocitrate levels increase; succinate, acetyl-
CoA and succinate-CoA, citrate/acetyl-CoA and succinate/fumarate
levels decrease; Figure 2a). Alterations in metabolite ratios can
reflect changes in enzyme activities or protein expression.
Interestingly, pyruvate dehydrogenase, isocitrate dehydrogenase
and SDH are part of or connected to the citrate cycle and
regulated by Ca2+.61 Ketamine blocks the NMDAR resulting in a

decreased Ca2+ flux into the cell and mitochondria, which
ultimately could be the cause for an inactivation of these enzymes
and the here observed metabolite level and metabolite ratio
alterations. Decreased isocitrate/alpha-ketoglutarate and succi-
nate/fumarate ratios as well as altered SDHA protein levels further
support this hypothesis.
The energy equivalents GTP and NADH are produced through

the citrate cycle and ATP via the connected OXPHOS pathway.
GTP is generated during the transformation of succinate-CoA to
succinate. We observed significantly higher levels of succinate
after Ketamine treatment possibly resulting in elevated GTP levels.
We could show a significant upregulation of GTP (Figure 2c)
already 2 h upon Ketamine treatment; 14 h after a single injection
of Ketamine, NADH and ATP levels tended to be increased (Figure
2d and e). GTP and ATP levels were significantly reduced for the
24-h time point when comparing Ketamine- with vehicle-treated
mice (Figure 2c and e). Taken together, whereas initially higher
levels of energy equivalents are produced upon Ketamine
injection, they are reduced again at 24 h and return to normal
levels at the 72-h time point.
Results from previous studies have associated the antidepres-

sant treatment response with drugs elevating ATP levels.
Phosphorous-31 magnetic resonance spectroscopy data have
shown decreased NPT levels (mainly ATP) in the brain of
depressed patients. Another magnetic resonance spectroscopy
study could demonstrate lower NPT levels (mainly ATP) in
fluoxetine responders compared with nonresponders.62,63 These

Table 1. Pathway analyses of significantly altered metabolites (PLS-DA VIP⩾ 1.0, SAM, FDR⩽ 0.10, SAM q⩽ 0.1) 2 and 14 h after a single injection of
Ketamine (3mg kg-1)

Pathway P-value PHolm-corrected value FDR Metabolite Time point (h)

Citrate cycle 0.000012 0.00095 0.0006 Fumarate 2
Succinate 2
Thiamine pyrophosphate 2
Phosphoenolpyruvate 2
Acetyl-CoA 2
Malate 2 /14

Glycine, serine and threonine metabolism 0.000016 0.00127 0.0006 Glyoxylate 2
Betaine aldehyde 2
Betaine 2
Choline 2
Glycerate 2
Serine 2
Cystathionine 2
3-Phosphoglycerate 2

Pyrimidine metabolism 0.000855 0.06841 0.0234 Ureidosuccinate 2
Cytidine 2
Thymidine 2
Uridine 2
Uridine 5'-monophosphate (UMP) 2
Cytidine diphosphate (CDP) 2
Methylmalonate 2

Pentose phosphate pathway 0.000004 0.00036 0.0004 Glucose-6-phosphate 14
6-Phospho-D-gluconate 14
Fructose-6-phosphate 14
Fructose-1,6-bisphosphate 14
Erythrose-4-phosphate 14

Glycolysis/gluconeogenesis 0.000432 0.03501 0.0177 Fructose-6-phosphate 14
Fructose-1,6-bisphosphate 14
Glucose-6-phosphate 14
Dihydroxy-acetone-phosphate 14
Glyceraldehdye-3-phosphate 14

Abbreviations: FDR, false discovery rate; PLS-DA, partial least square-discriminant analysis; SAM, significance analysis of microarrays (and metabolites); VIP,
variable importance in projection. N= 5 mice per group and time point.
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inconsistent findings make it difficult to know whether our
observations of initially increased or later decreased ATP levels
contribute to the antidepressant-like effect for Ketamine. Previous
data from a study in rats have suggested that the antidepressant-
like effect observed after a single injection of Ketamine is
mediated by an increased anabolic rate-mediating cell growth
and differentiation. An elevated anabolism might be mediated
through a higher energy demand, which we indeed observed 2
and 14 h after Ketamine treatment. The glycolytic pathway was
also found to be enriched upon Ketamine treatment
(Table 1). Almost all metabolites of this pathway show lower
levels (glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-
bisphosphate, dihydroxy-acetone-phosphate and glyceraldehyde-
3-phosphate) 14 h after Ketamine injection, with the exception of
3-phosphoglycerate and phosphoenolpyruvate that are upregu-
lated at the 2-h time point. The observed changes might be
caused by a feedback mechanism of the citrate cycle, which can
have an impact on glycolysis by either activating or inhibiting it or

by the metabolite ratio changes (fructose-6-phosphate/glucose-
6-phosphate, fructose-1,6-phospate/fructose-6-phosphate, glycer-
aldehyde-3-phosphate/dihydroxy-acetone-phosphate, 3-phospho-
glycerate/glyceraldehyde-3-phosphate, 3-phosphoglycerate/phos-
phoenolpyruvate and pyruvate/phosphoenolpyruvate) of the
glycolysis pathway indicating altered enzyme activities or protein
expression. Interestingly, whereas we found a reduced glycolysis
pathway activity after Ketamine treatment, a previous study has
shown an elevation of glycolytic metabolites following SSRI
treatment, suggesting that the two drug types have very different
modes of action.47 The rapid increase in newly synthesized
synaptic proteins and spines upon Ketamine treatment is
known to be initiated through the activation of mammalian
target of rapamycin. Neither conventional antidepressants
such as imipramine and fluoxetine acutely or chronically
administered nor electroconvulsive shock activate mammalian
target of rapamycin.23 Moreover, it was observed that the SSRI
sertraline inhibits mammalian target of rapamycin.64 All these
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Figure 2. Citrate cycle metabolite level, metabolite ratio and energy status analyses upon Ketamine treatment (3 mg kg− 1) of 2-, 14-, 24- and
72-h time points. (a) Citrate cycle time course showing metabolite fold change (FC) and metabolite ratios. Metabolite ratios are indicated by
boxes and each box represents a time point (from left to right 2, 14, 24 and 72 h). Significant metabolite ratio differences or trends are
illustrated in pink (increased ratio) and black (decreased ratio). N= 5 mice per group and time point. (b) Western blot analysis of succinate
dehydrogenase complex, subunit A (SDHA) from Ketamine- and vehicle-treated mice hippocampi, 2 h (1.705± 0.4583, Ketamine-treated, n= 4;
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n= 5; 1.085± 0.06048, vehicle-treated, n= 3) after treatment. Energy-state analyses of (c) GTP, (d) NADH and (e) ATP 2, 14, 24 and 72 h after
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findings might explain the delayed onset of conventional
antidepressants and the opposite findings with regard to pathway
activity between conventional SSRI antidepressants and Ketamine.
Whereas acute treatment of rodents with Ketamine at low levels

reduces depressive-like behavior as assessed by the FST immo-
bility time, higher doses of the drug chronically administered for
10 days have the opposite effect using the same behavioral
assay.65 Already at smaller doses (6 mg kg− 1) Ketamine also
induces prepulse inhibition deficits, known to be impaired in
schizophrenia, that can be reversed by antipsychotics.66,67

Furthermore, chronically injected high subanesthetic doses of
Ketamine produce positive, negative and cognitive schizophrenia-
like symptoms in healthy humans68 and rodents.65 For all these
reasons, Ketamine treatment is also used to generate animal
models of schizophrenia.
A possible explanation for the different acute and chronic

Ketamine treatment effects might be the involvement of different
receptor types. Acute Ketamine treatment has been reported to
only block NMDAR on GABAergic neurons, whereas chronic
treatment with high doses not only blocks NMDARs universally
but also nicotinic acetylcholine receptors.69

Alterations in metabolite, transcript and protein levels in post-
mortem tissue from schizophrenic patients have been reported for
glycolysis, citrate cycle and OXPHOS, the same pathways observed
to be affected in the present study.70–72 As Ketamine at higher
doses can induce schizophrenia-like symptoms, it is conceivable
that certain molecular pathways are shared between the
antidepressant and psychotic effects. At the same time there
must be differences in other affected pathways responsible for the
opposite effects of the drug. Owing to its psychomimetic side
effects Ketamine is not used as a first-line drug to treat MDD in the
clinic. An improved understanding of the molecular events
causing the antidepressant effect of Ketamine will help in
developing alternative fast-acting drugs with a similar mode of
action.
Finally, we were also interested in exploiting our metabolomics

analysis data to identify a biosignature for the Ketamine drug
response. PLS-DA and VIP score analyses revealed that 2-
ketoisovalerate, glutathione, maleate, methylmalonate, SBP, fuma-
rate and cytosine represent stable and consistent metabolite
biomarkers for all time points (Supplementary Figure 2B).
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We only assessed Ketamine’s behavioral effect using FST
immobility time. We did not carry out any additional behavioral
analyses including Learned Helplessness, Chronic Mild Stress and
Novelty Suppressed Feeding Test that have been reported by
others.17–22 Performing several consecutive behavioral assays
might affect the animals’ metabolome and skew the data. Other
limitations of our study include the limited number of animals that
were used for the metabolomic analyses (n= 5) and the relatively
large number of metabolites quantified (4200), which could
result in false discoveries.
Future metabolomic analyses of other brain regions relevant for

MDD including the prefrontal cortex, thalamus and amygdala will
further our understanding of Ketamine’s mode of action and the
antidepressant effect. Repeating our studies with an animal model
of depression will add further relevance to the human situation.
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