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Abstract 

The search for novel candidate genes determining antidepressant treatment response 

received a lot of attention within the last decade. In times of genome wide association 

studies, a lot of effort was done to detect key target gene that are involved in 

antidepressant treatment outcome. However, the search for such central target genes that 

modulate antidepressant treatment outcome was rather disappointing. In the current 

thesis, we established a novel unbiased experimental approach to investigate individual 

antidepressant response in mice and furthermore tried to link these findings to the clinical 

situation. In a translational approach, we were able to identify novel target genes that are 

modulated after chronic antidepressant treatment. In a second step, we also investigated 

early antidepressant response within this approach, which is in line with the human early 

response following antidepressant treatment. Here, our main focus was placed on the 

analysis of a gene expression profile in the peripheral blood, which allowed us to integrate 

our findings with the human data set. This integration enabled us to predict antidepressant 

response within a subset of patient. Even more, we could find commonly regulated 

transcription factors in both species which may play a role in antidepressant response. 

Additionally, to these interesting findings we also investigated novel candidate genes that 

were regulated after chronic paroxetine treatment. One of the detected genes was Sox11, 

which was found to be upregulated after subchronic as well as chronic antidepressant 

treatment. We could show that Sox11 is mainly regulated in a time dependant manner via 

SSRIs. After various manipulations of Sox11, we could also demonstrate that Sox11 plays 

a crucial role in anxiety-related behavior and is thus a very promising candidate for further 

anxiety-related studies. 
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Zusammenfassung 

In den letzten Jahren wurden eine Reihe an Studien veröffentlicht deren Ziel es war, neue 

Kandidatengene mit einer potentiellen Rolle im Behandlungserfolg von Antidepressiva zu 

detektieren. In Zeiten von genomweiten Assoziationsstudien wurde die Suche nach 

Genen die einen Behandlungserfolg vorhersagen könnten, immer populärer. Trotz all der 

Bemühungen in den letzten Jahren, waren diese Studien jedoch überwiegend 

enttäuschend. In der vorliegenden Arbeit haben wir in einem neuen, 

unvoreingenommenen, experimentellen Ansatz versucht, individuelle Antidepressiva 

Responsivität in Mäusen zu modulieren. Darüber hinaus haben wir diese präklinischen 

Befunde mit Ergebnissen aus humanen Studien integriert. Durch diesen translationalen 

Ansatz waren wir in der Lage, neue Kandidatengene zu identifizieren, welche nach einer 

chronischen Antidepressivagabe reguliert werden. Neben der chronischen 

Verabreichungsdauer waren wir auch an einem subchronischen Verabreichungszeitpunkt 

interessiert.  Dieser Zeitpunkt war für uns von großem Interesse, da auch in klinischen 

Studien Untergruppen von sogenannten frühen Respondern  identifiziert werden konnten. 

Deshalb untersuchten wir im peripheren Blut das Genexpressionsprofil in den 

Respondersubgruppen und verglichen diese mit den Humandaten. Durch diesen Ansatz 

war es möglich Responsivität in Humandaten vorherzusagen. Des Weiteren wurden neue 

Kandidatengene untersucht, welche durch Verabreichung von Antidepressiva reguliert 

werden. Eines dieser Gene ist Sox11, welches nach subchronischer und chronischer 

Antidepressivagabe, primär durch Serotonin-Wiederaufnahmehemmer, reguliert wird. 

Nach genetischer Manipulation von Sox11 konnten wir zeigen, dass es eine zentrale Rolle 

in angstbezogenem Verhalten spielt. Dies macht Sox11 zu einem sehr 

vielversprechenden neuen Kandidaten für Studien die sich mit Angsterkrankungen 

befassen. 
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1 Introduction 

1.1 Depression 

“Mental pain is less dramatic than physical pain, but it is more common and also more 

hard to bear. The frequent attempt to conceal mental pain increases the burden: it is 

easier to say “My tooth is aching” than to say “My heart is broken.” (C.S. Lewis, The 

Problem of Pain). 

Major depressive disorder (MDD) is one of the most common mental disorders. It is a very 

complex and multifactorial psychiatric disease, which affects up to 20% of the general 

population (Kessler et al., 2005). Furthermore, unipolar depressive disorders place an 

immense burden on society and the World Health Organization (WHO) ranked depression 

as the fourth leading cause of disability (Murray and Lopez, 1996; Rubinow, 2006). 

Depression is different from normal sadness. It is a recurring, severe mental disorder with 

a high complexity of symptoms, as depressed mood, avolition, sleep or psychomotoric 

disturbances, anhedonia, dysregulation of metabolism, endocrine and inflammatory 

parameters, impaired cognitive performance and finally may also lead to suicide (reviewed 

in (Villanueva, 2013; Pae and Patkar, 2013; Nestler et al., 2002a)). Additionally, bipolar 

disorders (episodes of major depression and mania) and anxiety are two diseases that 

most frequently overlap diagnostically with depression (Flint and Kendler, 2014). 

Specifically, various studies could demonstrate that about 60% of the depressed patients 

report one or more anxiety disorders throughout their lives (reviewed  in (Flint and 

Kendler, 2014)). 

Despite tremendous efforts over the past decades to understand the molecular 

underpinnings of depression, the neuropathology of depression remains largely unknown. 

Various hypotheses have nevertheless been postulated to explain depression and the 

treatment of depression.  

Monoamine theory of depression 

In the 1960s, monoamine oxidase inhibitors (MAOIs) were found to effectively treat 

depressive disorders. As their pharmacological mechanism of action comprises the 

inhibition of monoamine reuptake, namely serotonin (5-HT) and norepinephrine (NE), 

Schildkraut and colleagues introduced the monoamine hypothesis of depression, in which 

a deficiency of monoamines is responsible for depression (Schildkraut, 1965). Although 
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this hypothesis is nearly 50 years old, today’s antidepressants are still designed to acutely 

increase monoamine transmission by either inhibiting the degradation or the neuronal 

reuptake of monoamines (reviewed in (Krishnan and Nestler, 2008)). However, the validity 

of the monoamine hypothesis and whether an imbalance of monoamines in fact underlies 

depression has been frequently questioned. MAOIs and serotonin reuptake inhibitors 

(SSRIs) produce immediate effects on monoamine transmission, whereas their effects on 

the improvement of depressive symptoms require weeks of treatment (Krishnan and 

Nestler, 2008). The monoamine hypothesis of depression still underlies the first-line 

therapy for treating depressed patients, however the delayed onset of action as well as 

the low remission rates of antidepressants (Trivedi et al., 2006) have encouraged 

scientists to search for alternative explanations. 

Dysfunction of the neuroendocrine and immune system in depression 

Another well-established model of depression comprises the dysfunction of the 

hypothalamic-pituitary-adrenal (HPA) axis in depressed patients (Holsboer, 2000). Acute 

as well as chronic physical and psychological stressors are potential activators of the HPA 

axis (Keeney et al., 2006). Stress-related inputs converge in the paraventricular nucleus of 

the hypothalamus, where neurons synthesize corticotropin-releasing hormone (CRH), 

arginine vasopressin (AVP) and other neuropeptides. This in turn stimulates the synthesis 

and release of adrenocorticotropic hormone (ACTH) from the anterior pituitary. ACTH 

subsequently activates the synthesis and the release of glucocorticoids (cortisol in 

humans and corticosterone in rodents) from the adrenal cortex. This synthesis and 

release leads to hormonal, autonomic and behavioral effects, which allow the system to 

adapt to an acute challenge (e.g. effects on metabolism). Therefore, it can be stated that 

the HPA axis is a key component of the stress response and thus an important regulator 

of various higher brain structures including the amygdala and hippocampus (Nestler et al., 

2002a; Holsboer, 2001). The release of glucocorticoids is essential as they are 

responsible for the regulation of the HPA axis via a negative feedback loop (Nestler et al., 

2002a). Healthy individuals can adapt to these changes, whereas depressed patients fail 

to adapt (de Kloet et al., 2005). It has been suggested that the sustained increase in 

glucocorticoid levels (e.g. after severe stress or trauma) may damage the hippocampus, 

specifically the neurons within the cornu ammonis region 3 (CA3), to facilitate 

dysregulation of the feedback system, whereby the negative feedback loop becomes a 

positive feedback loop. This positive feedback loop consequently promotes greater 

increase in circulating glucocorticoids and thus more damage (Holsboer, 2000). To 
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support this theory, clinical studies have challenged the neuroendocrine system, to 

demonstrate that a subset of depressed patients show disturbed HPA axis regulation. 

Moreover, post-mortem studies could demonstrate that an elevation of neuropeptides, 

such as CRH and AVP, is common in a subset of patients (reviewed in (de Kloet et al., 

2005)).  

Cytokines, hormonal mediators of the immune response, are also a crucial part of the 

neuroendocrine system and accordingly play an important role in mood disorders 

(Schiepers et al., 2005; Raison et al., 2006; Miller et al., 2009). As afore mentioned, 

elevated levels of glucocorticoids is a characteristic feature of depression in a subset of 

depressed patients. Normally, glucocorticoids promote potent anti-inflammatory effects. 

Depressed patients show high levels of circulating proinflammatory cytokines, such as 

interleukin-6 (IL-6) and tumor necrosis factor alpha (Villanueva, 2013; Dunn, 2000; Dunn, 

2006) to offset the elevated levels of glucocorticoids. Proinflammatory cytokines not only 

contribute to the innate immune response and inflammation, but they also have relevant 

neuroendocrine and metabolic effects, including neurotransmitter metabolism and neural 

plasticity (Villanueva, 2013). Preclinical studies have shown that administration of Il-6 

induces depressive-like behavior in rodents and furthermore neutralizes the 

antidepressant effects of fluoxetine (Sukoff Rizzo et al., 2012). This has been supported 

by a clinical study in which people were treated with interferon alpha and consequently 

developed depression (Shelton and Miller, 2010). Furthermore, post-mortem brain studies 

have shown that different cytokines and genes involved in apoptotic processes are 

upregulated in depressed patients (Shelton et al., 2011). Interestingly, cytokines also 

stimulate the HPA axis and activate the secretion of growth hormone (Leonard, 2000), all 

endocrine processes associated with depression (Villanueva, 2013). Nevertheless, results 

have been inconsistent when investigating serum cytokine concentrations in depressed 

patients, suggesting that immune activation only accounts for a small subset of patients 

(Krishnan and Nestler, 2008).  

Neurogenesis and depression 

Adult neurogenesis has drawn a lot of attention in neuroscience within the last years. It 

has been shown that the adult mammalian brain is still able to remove existing glia cells 

and neurons as well as establish novel neural circuits (Villanueva, 2013). Adult 

hippocampal neurogenesis describes the process by which neuronal progenitor cells of 

the hippocampal subgranular zone (SGZ) and the subventricular zone (SVZ) of the lateral 
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ventricles divide mitotically to form new neurons that differentiate and integrate into the 

dentate gyrus (DG) or the olfactory system (reviewed in (Krishnan and Nestler, 2008)). 

Gould and colleagues were the first to suggest a potential role of SGZ neurogenesis in 

mood regulation. They clearly demonstrated that corticosteroid administration results in 

the suppression of cell division in the SGZ (Gould et al., 1992). Subsequent animal 

studies effectively demonstrated that a variety of chronic stress paradigms, commonly 

used as a preclinical model of depression, lead to a reduction in cell proliferation (Mirescu 

and Gould, 2006). However, studies investigating the effects of acute stress are not 

completely in line with those examining chronic stress. Acute foot shock, for example, was 

shown to reduce cell proliferation in male rats, whereas acute restrained stress had no 

influence on cell proliferation (reviewed in (Zhao et al., 2008)). In contrast to these 

findings, the regulation of cell survival after stress is not completely understood (Zhao et 

al., 2008). Increased glucocorticoid levels are considered the central mechanism 

underlying stress-induced suppression of cell proliferation in the SGZ. This hypothesis 

could be supported by two main findings. First, corticosterone administration decreases 

cell proliferation, and secondly adrenalectomy increases SGZ neurogenesis (Zhao et al., 

2008; Mirescu and Gould, 2006). In contrast to stress, antidepressant administration is 

able to increase cell proliferation in the SGZ (Warner-Schmidt and Duman, 2006; Duman, 

2004). Furthermore, antidepressants are able to reverse the stress-mediated decrease in 

cell proliferation (Warner-Schmidt and Duman, 2006). However the most interesting 

aspect is that the time course of antidepressant-induced changes correspond with the 

time delay for mood-elevating effects in humans (Miller et al., 2007). When administering 

antidepressants 1 to 5 days, no effect on cell proliferation can be found. Nevertheless, 

after 7 to 14 days of antidepressant treatment, an increased rate of neuronal proliferation 

can be detected. Extending the antidepressant treatment up to 4 weeks, produces a 

significant increase in the cell survival rate (Malberg et al., 2000; de Foubert et al., 2004). 

To strengthen the hypothesis that neurogenesis is involved in antidepressant treatment 

outcome Santarelli and colleagues combined hippocampal irradiation with chronic 

fluoxetine treatment in mice to show that fluoxetine treatment was ineffective in 

hippocampal-irradiated mice (Santarelli et al., 2003). To date, cell proliferation studies 

have not been very conclusive in human analyses. However, imaging studies could reveal 

that a decrease in hippocampal volume as well as in other forebrain regions is present in 

a subset of depressed patients, and thus supports the theory of neurotrophic factors, 

neurogenesis and depression (Krishnan and Nestler, 2008).  
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Depression - influence of genetic and environmental factors 

Increasing evidence demonstrates that depression is highly influenced by genetic factors 

(Ising and Holsboer, 2006; Lesch, 2004), and is indeed a highly heritable disorder (up to 

38%) (Kendler et al., 2006). However, the search for specific relevant genes has been 

very disappointing so far (Nestler et al., 2002a). As depression is a very complex 

psychiatric disorder, it is hard to find one common gene responsible for the development 

of depression. It is more likely that many genes are involved in the development of the 

disorder (Burmeister, 1999). Alternatively, variations of genes may contribute to 

depression in every affected family. More and more studies demonstrate that single 

nucleotide polymorphisms (SNPs), genetic variations in one single gene, are capable of 

contributing to either a stress-resilient or stress-vulnerable phenotype, which consequently 

determines the chance of developing depressive disorders. Binder and colleagues could 

demonstrate that different SNP variations in the human corticotropin releasing hormone 

receptor type 1 (CRHR1) gene, a gene that is highly involved in HPA axis regulation, 

modulate individual stress susceptibility and lead to a higher risk of developing psychiatric 

disorders such as depression (Binder and Nemeroff, 2010; Ressler et al., 2010). However, 

individual vulnerability to depression is only partly driven by genetic factors. More and 

more studies demonstrate that environmental factors, namely stress or trauma, are also 

important key players in the development of depression (Nestler et al., 2002a). 

Depression is often referred to as a stress-related disorder. Evidence show that severe 

stress, including early trauma or chronic stress during adulthood, leads to an increased 

risk of developing depression (Nestler et al., 2002a; Heim and Nemeroff, 2001; Heim et 

al., 2008). In summary, these findings indicate that stress, per se, is not sufficient to cause 

depressive episodes. It rather seems likely that an interplay between genetic risk factors 

and environmental factors underlies the etiology of depression. 

Depression and the glutamate system 

Glutamate was first recognized as a neurotransmitter in the 1980s and it is now known as 

the major excitatory neurotransmitter in the central nervous system (CNS) (Orrego and 

Villanueva, 1993). Glutamate mediates fast excitatory transmission (Sanacora et al., 

2012), and the majority of brain neurons and synapses are glutaminergic in nature 

(Pessoa, 2008). Furthermore, glutamate synaptic transmission is a key player in 

mediating cognitive and emotional processes (Pessoa, 2008). In the 1990s, Trullas and 

Skolnick shed new light on the role of the glutamate system in depressive disorders. They 
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could demonstrate that a N-Methyl-D-aspartate (NMDA) receptor antagonist exert 

antidepressant-like effects (Trullas and Skolnick, 1990). Subsequent animal models 

revealed that different types of environmental stressors enhance glutamate release and 

transmission in limbic and cortical brain regions. These molecular changes result in 

structural alterations, e.g. dendritic remodeling and reduction of synapses, which in turn 

further alter synaptic transmission (Sanacora et al., 2012). To additionally strengthen the 

role of glutamate in depressive disorders, clinical studies provide evidence that glutamate 

transmission is abnormal in depressed patients (Sanacora et al., 2012). In fact, increased 

glutamate levels are found in the patients' plasma (Sanacora et al., 2012). Furthermore, 

studies have shown that antidepressant treatment is able to reduce the higher plasma 

glutamate levels in depressed patients (Altamura et al., 1995; Maes et al., 1998). Frey and 

colleagues could show in one study with a mixed set of patients (bipolar and unipolar 

depression) that glutamate levels were decreased in central spinal fluid (Frye et al., 2007). 

A postmortem brain tissue study of the frontal cortex of depressed patients stated an 

increase in glutamate levels (Hashimoto et al., 2007).  

Despite no clear unifying hypothesis of depression nor a comprehensive understanding of 

the underlying pathophysiological mechanisms of depression, effective treatment 

strategies are nonetheless already available. 

1.2 Antidepressant drugs 

During the mid-1950s two precursors of the main contemporary classes of 

antidepressants were discovered, iproniazid for MAOIs (Crane, 1956) and imipramine for 

tricyclic antidepressant drugs (TCAs) (Kuhn, 1957; Kuhn, 1989). This discovery 

subsequently led to the development of a large number of antidepressant compounds 

(Papakostas et al., 2007). Within the following decades, other classes of antidepressants, 

for example SSRIs and serotonin-norepinephrine reuptake inhibitor (SNRIs) were 

discovered and are nowadays commonly prescribed to treat depressive disorders 

(Papakostas et al., 2007). These antidepressants are in general effective but far from 

ideal, as their therapeutic effects presents a delayed onset, taking several weeks to exert 

their full clinical effects and are often accompanied by unwanted side-effects, such as 

body weight gain or fatigue (reviewed in (Flint and Kendler, 2014)). While many patients 

respond well to the currently available antidepressants, a significant number of patients 

neither show an adequate response to the treatment nor complete symptom relief, and 

often the patients relapse (Trivedi et al., 2006). In 2007, the Sequenced Treatment 
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Alternatives to Relieve Depression study (STAR*D) revealed that only one-third of 

patients on citalopram monotherapy remitted and the remaining two-thirds of patients 

failed to remit. In follow-up studies, other antidepressant monotherapies were prescribed 

to these patients (Trivedi et al., 2006). Based on this study and similar studies, it became 

clear, that treatment strategies are largely based on a trial and error principle (Fabbri et 

al., 2013) and that the longer the patients are treated, the less chance they have to remit 

(Trivedi et al., 2006). To-date, commonly prescribed antidepressants are mainly acting on 

monoamine transmission. Their main aim is to increase the concentration of monoamines 

on the one hand, by blocking reuptake or inhibiting monoaminergic neurotransmitter 

metabolism, or on the other hand, by blocking receptors downstream of monoaminergic 

signal transduction (Delgado, 2004). For example, SSRIs, SNRIs, norepinephrine 

reuptake inhibitors (NERIs) as well as norepinephrine and dopamine reuptake inhibitors 

(NDRIs) all fall within this category (Wong and Licinio, 2004; Yadid et al., 2000). 

Collectively, these antidepressant drugs are not completely selective for a single 

neurotransmitter and thereby potentially increase the side-effects (Lucki and O'Leary, 

2004). Regardless, SSRIs are still used for first-line antidepressant therapy (Nemeroff, 

2007). MAOIs as well as TCAs are used for second-line antidepressant therapy. TCAs 

mainly block the NE transporter and some also block the 5-HT transporter, which 

ultimately lead to higher levels of 5-HT and NE in the synaptic cleft, features, which 

underlie their antidepressant effects. MOAI can block an enzyme called monoamine 

oxidase (MAO), which degrades 5-HT and NE in the synaptic cleft and the presynaptic 

cell. Blocking the MAO leads to a lower degradation of the monoamines and is thus 

leading to higher concentrations of the neurotransmitters (Bortolato et al., 2008) (Figure 

1). 
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Figure 1: Work mechanisms of different antidepressant classes. The main aim of SSRIs is to increase the 

concentration of 5-HT (indicated in purple) by blocking the presynaptic 5-HT receptors (indicated in yellow) and 

thus blocking the reuptake of the neurotransmitters. 5-HT is longer available in the synaptic cleft and therefore 

exert its antidepressant effect. MAOIs can block an enzyme called MAO, which degrades 5-HT and NE in the 

synaptic cleft and the presynaptic cell. While blocking the MAO the degradation of the monoamines is prevented 

and thus leading to higher concentrations of the neurotransmitters (in this figure only 5-HT is represented as a 

neurotransmitter). TCAs mainly block the NE transporter and some also the 5-HT transporter, which is then leading 

to higher levels of 5-HT and NE in the synaptic cleft, both features that can lead to antidepressant effects. 

During the past years, advances in antidepressant treatment approaches were made 

when old antidepressants were "made-over" to novel classes of antidepressants, 

presenting improved treatment efficacy. For example, desvenlaflaxine, an active 

metabolite of venlaflaxine, was "made-over" into its own antidepressant. Desvenlaflaxine 

is less metabolized by cytochrome P450 2D6 (CYP2D6) compared to venlaflaxine and 

thereby demonstrates more stable plasma levels (Beyer and Stahl, 2010). The next 

generation of antidepressants are targeting novel structures, namely receptors, and range 

from low-molecular-weight compounds that are acting on the HPA axis (like R121919, a 

CRHR1 antagonists) to neurokinin receptor antagonists (Beyer and Stahl, 2010). For 

instance, CRHR1 antagonist (R121919) treatment could significantly reduce depression 

and anxiety scores in depressed patients (Zobel et al., 2000). Although the exploration 

trials of CRHR1 antagonists were very promising, more recently in follow-up studies, 

these drugs have not been successful (reviewed in (Holsboer, 2014)). 

Despite advances in novel antidepressant drug design, 40% of the patients do not present 

an adequate response to the first medication prescribed. Even more concerning, 30% of 

all patients with MDD do not respond to any intervention (Baghai et al., 2006). For these 

patients, it is typical to alternate between different classes of antidepressants, different 

concentrations and to combine different antidepressant drugs. Another novel approach for 
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treatment-resistant patients is the use of ketamine, a NMDA receptor antagonist. Clinical 

studies have demonstrated that, an acute injection of ketamine has rapid antidepressant 

effects without the unpleasant time-delay. Nevertheless, ketamine produces strong side 

effects and is therefore not suitable as a standard antidepressant therapy (Li et al., 2010). 

Electroconvulsive seizure therapy (ECT) is another therapeutic application that is used for 

treatment-resistant patients, in which generalized epileptic seizures are provoked by 

electrical stimulation of the brain (Frey et al., 2001).  

There are many possibilities to treat depression, however the clinical response to the 

treatment is not always satisfying. 

1.3 Depression and the hippocampus 

Neuroimaging technologies as well as neuropathological and lesion studies enabled in 

vivo characterization of anatomical and physiological correlates of mood disorders 

(Drevets, 2000; Czéh et al., 2001). These results as well as post-mortem studies shed 

new light on brain regions that are of major interest in mood disorders. It has been shown 

that brain regions involved in the regulation of mood and emotion, reward processing, 

attention, motivation, stress response as well as social cognition are altered in depressed 

patients (Phillips et al., 2003). The limbic-cortical-striatal-pallidal-thalamic circuit is formed 

by the connection between the orbital and medial prefrontal cortex, amygdala, 

hippocampus (HC), ventromedial striatum, mediodorsal and midline thalamic nuclei as 

well as the ventral pallidum (Öngür et al., 2003). Although various brain regions are 

important for a comprehensive understanding of depressive disorders, the hippocampal 

formation is one of the most studied brain regions in depressed patients (Videbech and 

Ravnkilde, 2004). It is involved in learning and memory (Fanselow, 2000), and is one of 

the few brain regions where adult neurogenesis occurs (Braun and Jessberger, 2014).  

The HC is a bilaminar grey-matter structure, which receives input from the amygdala, the 

claustrum, the septal complex and the supramammillary area, the hypothalamus, the 

thalamus and the brain stem. In turn, it projects to the septal nuclei, the thalamus, the 

mamillary, striatum as well as the amygdaloid complexes among others (Rosene and Van 

Hoesen, 1977). The laminae that form the HC complex consist of the DG and the cornu 

ammonis, which can be divided further into three regions, cornu ammonis region 1-3 (CA1 

- CA3), based on their pyramidal neuronal morphology and sensitivity to anoxia (Freund 

and Buzsaki, 1996; Lucas and Strangeways, 1963). The DG receives the principle 
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afferent input from the entorhinal cortex (ec) and then transmits the signal to the CA3 

neurons via the mossy fibers. The CA1 subregion represents the last station of the 

intrahippocampal trisynaptic loop and is mainly targeted via the pyramidal cells of the 

CA3, the Schaffer collaterals (Sc). The principle hippocampal output is formed by the CA1 

pathway via the subiculum, which projects to the ec formation, among others (Freund and 

Buzsaki, 1996).  

Extensive preclinical as well as clinical research have shown that the mnemonic and 

neuroplasticity function of the hippocampus is highly sensitive to stress, specifically 

elevated cortisol/corticosterone levels, which are often altered in depressed patients 

(Videbech and Ravnkilde, 2004; Checkley, 1996). Various studies have demonstrated that 

both physiological and psychosocial stress lead to adaptive changes in the hippocampus, 

e.g. reduction of neurogenesis in the DG. Indeed, the adult mammalian brain contains 

substantial numbers of neurogenic neural stem/progenitor cells (NSPCs) that retain the 

ability to generate new neurons throughout life, which is also known as adult 

neurogenesis (reviewed in (Braun and Jessberger, 2014)). However, adult neurogenesis 

is limited to two brain areas, namely the SGZ of the hippocampal DG and the SVZ lining 

the lateral ventricles (Braun and Jessberger, 2014). NSPCs reside in the SGZ of the adult 

DG and give rise to granular cell neurons via multiple steps. NSPCs, known as type 1 

cells, extend a radial process through the granular cell layer into the molecular layer and 

can then be activated to generate proliferating type 2 non-radial NSPCs. These type 2 

cells give rise to neuroblasts, which begin to branch out upon neuronal differentiation. 

Immature neurons migrate into the granular cell layer and over a 3-week period, newborn 

granule cell neurons form large dendritic arbor into the molecular layer as well as into the 

hilus, which then targets cells in the hilus and CA3 region (reviewed in (Braun and 

Jessberger, 2014)) (Figure 2). After migrating into the dentate granular layer the neurons 

become dentate granular cells and are thus integrated into existing circuits and begin to 

receive functional input (Zhao et al., 2008).  

The reduction in neurogenesis has been hypothesized to be linked to depressive episodes 

and has been shown to be restored following antidepressant treatment (see chapter 1). In 

line with this theory, clinical studies have shown a significant reduction in hippocampal 

volume in depressed patients compared to healthy controls (Krishnan and Nestler, 2008). 

Additionally, studies have demonstrated that antidepressants increase neurogenesis 

whereas chronic stress leads to a reduction in the neurogenesis rate. In terms of the 

delayed onset of antidepressant treatment response, it is very likely that alterations in 
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gene and protein expression could be the reason for the therapeutic effect. For instance, 

multiple studies have demonstrated that hippocampal neurogenesis-related genes, 

namely brain-derived neurotrophic factor (BDNF), play an important role in depression 

and antidepressant treatment (Duman and Voleti, 2012). It was shown that stress reduces 

BDNF synthesis, whereas antidepressants increase BDNF synthesis and signaling in the 

prefrontal cortex and HC (reviewed in (Zhao et al., 2008)). 

 

Figure 2: Signaling pathway and neurogenesis in the adult hippocampus in the mouse. The DG receives input from 

the ec and then pass on the signal to the CA3 neurons via the mossy fibers (mf). The pyramidal cells of the CA3 

target mainly the CA1. The principle hippocampal output is formed by the CA1 pathway. Adult neurogenesis occurs 

in the SGZ of the HC, where NSPCs reside. Type 1 cells, extent a radial process through the granular cell layer into 

the molecular layer and can then be activated to generate proliferating type 2 non-radial NSPCs. The type 2 cells 

give rise to immature neurons, which begin to branch out. Immature neurons migrate into the granular cell layer 

and newborn granule cell neurons form large dendritic arbor, the so called mature granule cells. 

1.4 Gene expression profiling in depression 

Gene expression profiling is a very propitious technique, and has successfully identified 

promising genes, such as SLC6A15 (Kohli et al., 2011). Within the past years, unbiased 

approaches, including microarray analysis or next-generation sequencing, have become 

attractive techniques to detect novel candidates and pathways, which underlie 

antidepressant treatment outcome (Ising et al., 2009; Tansey et al., 2013). 

Genetic factors strongly contribute to the development of many mental disorders. More 

and more studies have already shown that variations in specific alleles in combination with 

environmental factors affect individual susceptibility to develop mental disorders. For 

instance, Bradley and colleagues found a significant gene x environment interaction in 
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various SNPs in the CRHR1, a gene involved in the HPA axis. They demonstrated that 

specific CRHR1 polymorphisms were able to moderate the effect of childhood abuse on 

the risk of adult depressive symptoms (Bradley et al., 2008). Within the last years, 

genome-wide association studies (GWAS) gained more and more importance as their 

methodical properties as well as their statistical power to detect gene variations became 

more sensitive (Bush and Moore, 2012; Stranger et al., 2011; van der Sijde et al., 2014). 

Such studies aim to detect genetic factors that contribute to complex diseases, which 

often results from a combination of multiple genetic as well as environmental risk factors 

(Freimer and Sabatti, 2007). GWAS studies are carried out in two stages: first the 

discovery phase and in a second step, the replication phase. The discovery phase is used 

to screen the whole genome. In the replication phase, a subset of SNPs are tested in an 

independent cohort (Flint and Kendler, 2014). In comparison to candidate-gene studies 

that use either resequencing or association studies of specific genes, one advantage of 

GWAS studies is that the approach is unbiased, aiming to identify novel targets that may 

contribute to the examined disorder (Hirschhorn and Daly, 2005). Recently, GWAS have 

been performed for many common disorders, and in some cases, genomic regions with a 

strong linkage to the disease were identified, such as in type 1 diabetes (Nisticò et al., 

1996). However, for many diseases, these association studies showed limited success. 

When it comes to depressive disorders, and especially antidepressant treatment outcome, 

a meta-analysis combining three genome-wide pharmacogenetic studies, the Genome-

Based Therapeutic Drugs for Depression (GENDEP) project, the Munich Antidepressant 

Response Signature (MARS) project, and the STAR*D study, was performed aiming to 

identify biomarkers predicting antidepressant response. As depressed patients show a 

large heterogeneity in regard to treatment outcome, it was suggested that genetic 

variations might contribute to this variability (GENDEP Investigators et al., 2013). 

However, they were not able to detect reliable predictors of antidepressant treatment 

outcome (GENDEP Investigators et al., 2013). The authors suggest that sub-cohorts 

should be analyzed in the future, as they were able to detect a variant associated within 

the SSRI treated patients with early SSRI response (after 2 weeks of treatment). 

However, they state that this finding would not survive further statistical correction in their 

analysis (GENDEP Investigators et al., 2013). This study once again demonstrates that 

the outcome of antidepressant treatment is a very complex and heterogenic phenomenon. 

Therefore, it might be worthwhile to assess individual treatment outcomes in future 

studies. 
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1.5 SRY-box containing gene 11 (Sox11) - a novel antidepressant-inducible 
gene 

One of the genes that was extensively studied in this thesis is SRY-box containing gene 

11 (Sox11). The male sex determination gene Sry (sex-determining region Y), was the 

first of the Sox gene family that was discovered in the 1990s (Kiefer, 2007). All Sox genes, 

including Sox11, are transcription factors, and have been identified throughout the animal 

kingdom (Guth and Wegner, 2008).  

Structure and function of SoxC genes 

Ten Sox gene families have been described so far, SoxA – SoxH, grouped according to 

their amino acid identity (within one group > 70%) (Guth and Wegner, 2008). All of them 

contain a DNA-binding high-mobility group (HMG) domain that encodes the DNA-binding 

domain of a protein (Guth and Wegner, 2008). During the past decades, the role of Sox 

genes was receiving more attention in developmental processes, such as embryogenesis, 

gastrulation and stem cells (Guth and Wegner, 2008). Sox4, Sox11 and Sox12 are 

members of the SoxC family. SoxC genes are expressed in committed, postmitotic 

neuroblasts, which suggests that they are involved in the latter steps of neuronal 

development (Bergsland et al., 2006). Studies have shown that the SoxC group is mainly 

expressed in developing neurons, oligodendrocytes and astrocytes in the human brain 

(Bergsland et al., 2006; Jay et al., 1995). Furthermore, previous studies have shown that 

overexpression of SoxC activates panneuronal markers, namely tubulin, beta 3 class III 

(Tubb3) and microtubule-associated protein 2 (Map2) (Bergsland et al., 2006). Sox11 is 

expressed in the developing mouse nervous system (Bergsland et al., 2006), however is 

absent in many adult tissues (Xu and Li, 2010). Haslinger and colleagues revealed that 

within the adult mouse brain, Sox11 is mainly expressed in the DG of the HC and in the 

subventricular zone of the olfactory bulb. Furthermore, they showed that Sox11 is stage-

specifically expressed in cells of adult neurogenic lineage, whereas the transcriptional 

targets of Sox11 adult neurogenesis are still unknown (Haslinger et al., 2009).  

Sox11 and its involvement in diseases 

Sox11 is expressed in virtually all aggressive mantel cell lymphomas and was recently 

recognized as a diagnostic and prognostic antigen (Zeng et al., 2012). Apart from its role 

as a diagnostic marker in cancer research, very little is known about the physiological 

roles of Sox11 in adult organisms. It has been shown that Sox11-deficient mice present 
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various craniofacial and skeletal malformations, asplenia and hypoplasia of the lung and 

stomach. Importantly, these Sox11 malformations are in line with the human malformation 

syndrome (Sock et al., 2004). To-date there is a paucity information describing the 

behavioral characteristics of Sox11 in adult mice. The association between neurogenesis 

and psychiatric disorders suggests that insufficient neuronal proliferation, differentiation 

and connectivity during brain development and/or insufficient adult neurogenesis may 

contribute to the risk of illness (Sha et al., 2012) and therefore Sox11 would be an 

interesting candidate to investigate. 

1.6 Animal model of depression 

Modeling a neuropsychiatric disorder, for example depression, in rodents is a challenge 

on account of the complexity and vastness variety of symptoms in depressed patients. 

Furthermore, the psychological aspect cannot be modeled in animals as psychological 

parameters cannot be interpreted in rodents. Willner and colleagues developed a number 

of criteria that should be fulfilled in a potential valid animal model of disease (Willner, 

1984). The first criterion is the aspect of face validity within an animal model. High face 

validity means that there is a high degree of uniformity between the disease symptoms in 

humans and rodents. For depression this would include e.g. anhedonia, increased 

anxiety, alteration in HPA axis activity or sleep disturbances (Müller and Holsboer, 2006). 

Another very important aspect of any potential animal model is its predictive validity. This 

is achieved when treatment approaches, which are successful in the clinical situation, 

exert the same effects in the animal model. Finally, the third criterion is construct validity. 

High construct validity implies that the etiological processes underlying the disease state 

is the same in the animal model as in humans (Chadman et al., 2009). An example of high 

construct validity includes modeling a persisting genetic variant is present in the human 

disease state, either by overexpression or knockdown of a known disease-causing genetic 

mutation (Nestler and Hyman, 2010).  

Modeling antidepressant treatment  

Animal models aiming to investigate the influence of antidepressant treatment are 

commonly used within preclinical psychiatric research. However, such model systems 

present some limitations in terms of predictive validity (Figure 3). 
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Is the dosage used in the animal model comparable to the clinical situation?  

Most animal studies are conducted with very high dosages of antidepressants (for 

instance paroxetine: 18mg/kg BW; fluoxetine: 18mg/kg BW (Holick et al., 2007)). In 

comparison to the human situation (paroxetine and fluoxetine are administered with a 

dosage of 20 - 40mg per day for an average person of 70kg (≙ 0.29mg/kg - 0.57mg/kg 

BW)), it can be concluded that most of the studies are potentially overdosing the animals. 

How is the antidepressant drug applied? 

Many animal studies administer the antidepressant drugs via the drinking water (Wagner 

et al., 2012; Scharf et al., 2013), gavaging (Ganea et al., 2012; Sillaber et al., 2008; 

Webhofer et al., 2011) or via i.p. injections (Steru et al., 1985; de Montigny and 

Aghajanian, 1978). However, in the clinical situation we can see that most of the patients 

are treated with tablets. 

How long should a drug be administered to provoke a robust effect? 

In the human situation we can see that the majority of patients start responding to the 

antidepressant treatment after at least 4 - 6 weeks of treatment. However, in preclinical 

studies, the longest treatment period is 28d, with most studies employing even shorter 

treatment periods (Ganea et al., 2012; Fava et al., 2000; Sillaber et al., 2008; Vaugeois et 

al., 1997). Furthermore, several studies draw conclusions following an acute 

antidepressant exposure, whereas this acute antidepressant effect is not effective in the 

clinical practice. Collectively, it is evident that a large gap still exists between preclinical 

research and the actual clinical setting, and therefore the translational value of animal 

models for depression could be improved. 

Therefore, it would be desirable to mimic the clinical situation as closely as possible to get 

a better translational approach. 
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Figure 3: Illustration of the current clinical and preclinical situation of antidepressant response. There are many 

limitations at the moment when it comes to find the best treatment strategy for each patient. One reason for that is 

the lack of innovative pharmacological approaches, as most of the antidepressants used at the moment are based 

on the findings from the 1950s. These antidepressants are in general effective, although many patients do not 

present an adequate response to the treatment. Additionally, there is a lack of biomarkers that predict 

antidepressant response in humans. There is also a deficit of appropriate animal models that are mimicking the 

clinical situation as closely as possible. A first step towards better treatment strategies and biomarkers for 

antidepressant response might be the detection of novel targets by using an unbiased approach in a novel animal 

experimental approach. 
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1.7 Aim of the thesis 

The overarching aim of this thesis is to gain a insight into the neurobiology underlying 

individual treatment response in MDD. We directed our research towards addressing two 

major problems that currently impede advances in antidepressant drug development 

employing a translational strategy, namely, we sought to address:  

1. Identification of early biomarkers would promote evidence-based selection of 

antidepressant treatment options, rather than the trial and error approach currently used. 

As some patients already present a positive treatment effect after 14d of antidepressant 

treatment, we further aimed to identify novel candidate genes, biomarkers and pathways 

determining an early antidepressant response.  

2. The lack of conceptually novel antidepressant compounds. To further proceed in this 

field we aimed to establish a novel experimental approach that models antidepressant 

responsiveness in mice, and to subsequently implement this approach in order to identify 

novel targets mediating individual antidepressant response. To gain a better 

understanding of individual antidepressant response and the basis for the heterogeneity in 

antidepressant treatment outcome, we aimed to mimic the clinical situation as closely as 

possible.  
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2 Materials and Methods 

2.1 Animals 

The experiments were carried out with male DBA/2J mice obtained from Charles River 

(Charles River Laboratories, France). Animals were single housed in polycarbonate cages 

(21 x 15 x 14cm) with standard bedding and nesting material, with a 12L:12D cycle (lights 

on at 7am) as well as constant temperature (23 ± 2°C) and humidity (55 ± 5%). Standard 

mouse chow (Altromin 1324, Altromin GmbH, Germany) and tap water were provided ad 

libitum. All experiments were carried out in the animal facility of the Max Planck Institute of 

Psychiatry in Munich, Germany, in accordance with the European Communities Council 

Directive 2010/63/EU. All efforts were made to minimize animal suffering during the 

experiments. The protocols were approved by the committee for the Care and Use of 

Laboratory animals of the Government of Upper Bavaria, Germany. 

2.2 Experimental design 

2.2.1 Validation of a novel approach to investigate antidepressant response in 

mice  

2.2.1.1 Paroxetine - Dosage 

Dosage: 1mg/kg BW 

The aim of this study was to identify the minimum effective paroxetine dosage for the 

DBA/2J strain. Therefore, 41 male DBA/2J mice were randomly assigned to either the 

vehicle (n=11) or paroxetine (n=30) experimental group. Upon arrival, animals were at the 

age of 7 - 9 weeks and housed singly. Pharmacological treatment started at the age of 9 - 

11 weeks. The animals were treated with 1mg/kg body weight (BW) paroxetine or vehicle 

for 28 days twice a day (for details see 262.3). After the treatment interval the animals 

were subjected to a Forced Swim Test (FST) and sacrificed directly afterwards (Figure 

4A). Trunk blood and whole brains of the animals were collected and stored until further 

processing (for details see 2.4). 
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Dosage: 5mg/kg BW 

To identify the minimum effective dosage, a second experiment was performed using a 

paroxetine concentration of 5mg/kg BW. Animals were at the age of 7 - 12 weeks at the 

arrival and housed singly from the beginning on. Paroxetine treatment started at the age 

of 9 - 14 weeks. The animals were treated with 5mg/kg BW paroxetine (n=100) or vehicle 

(n=58) for 28d twice a day (for details see 2.3). On treatment day 29, the animals were 

subjected to a FST and sacrificed directly after the FST (Figure 4B). Trunk blood and 

brains of the animals were collected and stored until further use (for details see 2.4). 

 

Figure 4: Experimental time course. (A) Animals were randomly divided in vehicle and paroxetine treatment groups. 

Animals were treated with either 1mg/kg BW paroxetine or vehicle for 28d twice a day. Last drug administration 

was given to the animals on day 29 in the morning (6am). 4h later the animals were subjected to a FST and killed 

directly after the FST. (B) Animals were randomly divided in vehicle and paroxetine treatment groups. They were 

treated with either 5mg/kg BW paroxetine or vehicle for 28d twice a day. Last drug administration was given to the 

animals on day 29 in the morning (6am). 4h later the animals were subjected to a FST and sacrificed directly after 

the FST 

 

2.2.1.2 Paroxetine - Acute treatment effects 

In a next step, we investigated the effects of an acute paroxetine treatment and therefore 

male DBA/2J mice were either treated with 5mg/kg BW paroxetine (n=30) or vehicle 
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(n=50). Animals were between 12 - 14 weeks old and treated on the day of the behavioral 

testing, with one acute dosage of 5mg/kg BW paroxetine, 4h before the behavioral test 

and then sacrificed directly after the FST (Figure 5). Trunk blood and brains of the animals 

were collected and stored until further processing (for details see 2.4). 

 

Figure 5: Overview of experimental time course. Animals were treated on the day of the behavioral testing with one 

acute administration paroxetine (5mg/kg BW). 4h later the animals were subjected to a FST and directly sacrificed 

after the test. 

2.2.1.3 Route of administration: Acute administration of mouse pellets versus 

intraperitoneal injection (i.p.) 

I.p. injection is a common used technique to administer pharmacological agents to mice. 

We investigated in this study whether the pharmacokinetic effects of the customized 

palatable mouse pellets is comparable to i.p. injections. Therefore, 10 male DBA/2J mice 

were i.p. injected once with 5mg/kg BW dosage of paroxetine. The mouse pellet control 

group (n=30) originated from the acute treatment experiment (see chapter 2.2.1.2). Trunk 

blood and whole brains were collected at sacrifice to measure paroxetine levels (for 

details see chapter 2.7.2). 

 

2.2.1.4 Pharmacokinetics of paroxetine  

In order to get a better understanding of the pharmacokinetic profile of paroxetine, 

especially with regard to the pharmacological half-life in the mouse, 20 male DBA/2J mice 

were treated with 5mg/kg BW paroxetine twice a day for 28d (animals were 9 - 10 weeks 

old at the beginning of the treatment) (for details see 2.3). After the treatment period 

animals were killed at different time points (1d (n=5), 3d (n=5), 7d (n=5) or 14d (n=5)) 
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(Figure 6). Trunk blood and whole brains were collected at sacrifice and stored until 

further use (for details see 2.4). 

 

Figure 6: Overview of the experimental time course. Animals were treated with 5mg/kg BW paroxetine twice a day 

for 28d. After the treatment period animals were killed at different time points after discontinue with the paroxetine 

treatment. Animals were sacrificed 1d (n=5), 3d (n=5), 7d (n=5) or 14d (n=5) after discontinue the paroxetine 

treatment.  

2.2.1.5 The Forced Swim Test as a readout parameter for antidepressant response 

This study was designed to assess whether the FST is a suitable behavioral test to 

investigate the variability of antidepressant treatment response in mice. Animals were 

tested before and after the antidepressant treatment in the FST. This repeated testing was 

used to investigate whether differences in treatment response of the animals could be due 

to preexisting inherent characteristics. Therefore, 60 male DBA/2J mice were subjected to 

the first FST at the age of 8 - 9 weeks. After one week of recovery, the animals were 

treated twice a day for 28d with either 5mg/kg BW paroxetine (n=40) or vehicle (n=20) (for 

details see 2.3). On the last day of treatment the animals were tested in the FST for the 

second time (Figure 7). Animals were killed directly after the FST, trunk blood and whole 

brains were collected at sacrifice and stored until further processes (for details see 2.4). 
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Figure 7: Overview of the experimental time course. Male DBA/2J mice were tested at the age of 8 - 9 weeks in the 

FST for the first time. After one week of recovery, the animals were treated twice a day for 28d with either 5mg/kg 

BW paroxetine. On the last day of treatment the animals were tested in the FST. Animals were sacrificed directly 

after the FST. 

2.2.2 Detection of potential novel candidate genes after chronic paroxetine 

treatment 

In a next step, we were aiming to detect novel molecular targets mediating an individual 

antidepressant response after chronic paroxetine treatment within our novel experimental 

approach. Therefore, 158 male DBA/2J, aged 9 - 14 weeks, were treated with 5mg/kg BW 

paroxetine (n=100) or vehicle (n=58) for 28d twice a day (for details see 2.3). 

Subsequently, the mice were sacrificed directly after the FST (Figure 8). To investigate 

differences in antidepressant treatment response, the animals were divided into good, 

intermediate and poor treatment responders according to their performance in the FST 

(for details see chapter 2.5). Trunk blood and brains were collected and stored until further 

use (for details see 2.4).  

 

Figure 8: Overview of the experimental time course. Animals were randomly divided in vehicle and paroxetine 

treatment groups. Animals were treated with either 5mg/kg BW paroxetine or vehicle for 28d twice a day. Last drug 

administration was given to the animals on day 29 in the morning. Animals were subjected to a FST 4h later and 

sacrificed directly after the FST. 
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2.2.3 The role of Sox11 in antidepressant response and depression 

2.2.3.1 Characterization of Sox11 under different treatment conditions 

Based on the results obtained in 2.2.2 Sox11 was identified as a promising novel 

candidate gene. In order to investigate the influence of paroxetine treatment on Sox11 

expression, brains from the previous experiments (see chapter 2.2.1.3, 2.2.2 and 2.2.4) 

were processed for in situ hybridization (ISH) (2.7.8). 

2.2.3.2 The effects of reboxetine on Sox11 expression 

The aim of this study was to assess, whether the altered Sox11 messenger RNA (mRNA) 

expression is a SSRI-dependent effect or a general antidepressant effect. A total of 25 

male DBA/2J mice were treated for 28d with either vehicle (n=10) or reboxetine (n=15), a 

norepinephrine reuptake inhibitor (for details see 2.3). At the end of the treatment period, 

the animals were subjected to the dark-light box (DaLi) and the FST. Animals were 

sacrificed directly after the FST (Figure 9). Trunk blood and whole brains were collected 

and stored until further use (for details see 2.4). 

 

Figure 9: Overview of the experimental time course. DBA/2J mice were treated for 28d with either vehicle (n=10) or 

reboxetine (n=15). To characterize the behavioral effects of Reboxetine more detailed, the DaLi was used in 

addition to the FST. Animals were sacrificed directly after the FST. 

2.2.3.2 Influence of Sox11 overexpression on antidepressant-like behavior 

To provide a better insight into a putative function of Sox11 on emotional behavior, region-

specific overexpression (OE) of Sox11 in the DG of the HC formation was achieved by 

using a recombinant adeno-associated virus (AAV) (Schmidt et al., 2011b) 

(methodological details can be found in chapter 2.8). AAV-Sox11OE (n=23) and AAV-

empty (n=20) mice were generated through stereotaxic injection of the virus and allowed 
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to recover for 4 weeks from the surgery. This time interval ensured a sufficient transgene 

expression. As Sox11 was upregulated after 28d of paroxetine treatment the animals were 

tested another four weeks later (in total eight weeks after the surgery). This time frame 

was chosen to activate potential downstream pathways in the same way as the chronic 

antidepressant treatment. The behavioral testing battery included an open field test (OF), 

a FST, DaLi, novelty induced hypophagia (NIH) and a Y-Maze (Figure 10). Animals were 

sacrificed under basal conditions and perfused for immunohistochemical confirmation as 

well as ISH of Sox11 OE. Whole brains were collected and stored until further processing 

(for details see 2.4). 

 

Figure 10: Overview of the experimental time course. Animals were randomly distributed to either AAV9 Sox11 OE 

or the AAV9 empty groups. After the surgery, the animals were allowed to recover for 4 weeks from the surgery. An 

upregulation of Sox11 was found after 28d of paroxetine treatment. To ensure that potential pathways will be 

activated due to the viral OE the animals were tested another 4 weeks later. The behavioral testing battery included 

an OF, FST, DaLi, NIH and a Y-Maze. Animals were sacrificed under basal conditions. 

2.2.3.3 Sox11 OE and its influence on neurogenesis 

We next asked whether an overexpression of Sox11 would also affect neurogenesis, 

thereby mimicking this known cellular antidepressant effect (Warner-Schmidt and Duman, 

2006; Sahay and Hen, 2007). 23 male DBA/2J mice were injected with either an AAV9-

Sox11 OE or AAV9-empty. Viral injection was performed in 12 - 13 weeks old DBA/2J 

male mice. 1µl of either AAV9-Sox11OE (n=12) or AAV9-emtpy (n=11) was injected 

bilaterally in the dorsal hippocampal DG region (for details see 2.8). After that, the animals 

were allowed to recover for four weeks from the surgery, which ensured a sufficient stable 

transgene expression. 5-bromo-2-deoxyuridine (BrdU) (Sigma Aldrich, Germany) was 

solved in 0.9% sodium chloride. Animals were then injected on three consecutive days 

with a 100mg/kg pulse. 16 animals (Sox11OE n=8; Empty control n=8) were perfused 2h 

after the last BrdU injection. This time point was used to investigate the proliferation rate 

of new DG cells as a readout of the viral overexpression of the Sox11. To investigate the 

maturation status of the new-born neurons (8 weeks after the surgery) 7 animals 

(Sox11OE n=4; Empty control n=3) were perfused 28d after the last BrdU injection. 
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Animals were perfused under basal conditions and whole brains were collected until 

further processing (for details see 2.4). 

2.2.3.4 Sox11 knockdown in combination with paroxetine treatment and its 

influence on antidepressant-like behavior 

To examine the effects of a Sox11 knockdown (KD) in combination with a chronic 

paroxetine treatment, viral injection was performed on 12 - 13 weeks old DBA/2J mice as 

previously reported (Schmidt et al., 2011b). AAV1/2-Sox11KD (n=35) and AAV1/2 

scrambled (SCR) (n=34) mice were generated (for details see 2.8) and allowed to recover 

for 4 weeks from the surgery to ensure a sufficient transgene expression. Subsequently, 

the animals were randomly assigned to either a vehicle control or a paroxetine treated 

groups and treated for 28d with paroxetine or vehicle. The behavioral testing battery 

included an OF, DaLi, NIH and a FST (Figure 11). Animals were sacrificed under basal 

conditions and perfused for immunohistochemical confirmation as well as ISH to verify the 

Sox11 KD (for details see 2.7.8 and 2.7.9). 

 

Figure 11: Overview of the experimental time course. Animals were randomly distributed to either AAV1/2 Sox11 

KD or the AAV1/2 SCR groups. After the surgery, the animals were allowed to recover from the surgery for 4 weeks. 

Subsequently, the animals were either treated for 28d with paroxetine or vehicle. The behavioral testing battery 

included an OF, DaLi, NIH and a FST. Animals were sacrificed under basal conditions. 

2.2.4 Detection of potential novel candidates after subchronic paroxetine 

treatment in the brain and periphery 

In order to detect potential novel biomarkers mediating antidepressant response and to 

identify candidates modulating an early antidepressant response in particular, a shorter 

treatment period was used for this study. Therefore, 140 male DBA/2J mice were treated 
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with either 5mg/kg BW paroxetine (n=90) or vehicle (n=50) for 14d twice a day (for details 

see 2.3). At the beginning of the paroxetine treatment animals were at the age of 9 - 12 

weeks. Subsequently, the animals were subjected to a FST and sacrificed directly after 

that. The animals were divided into good, intermediate and poor treatment responder 

according to their performance in the FST (for details see chapter 2.5) (Figure 12). Trunk 

blood and brains were taken at sacrifice and stored until further use (for details see 2.4). 

 

Figure 12: Overview of the experimental time course. Animals were randomly divided in vehicle and paroxetine 

treatment groups. Animals were treated with either 5mg/kg BW paroxetine or vehicle for 14d twice a day. Last drug 

administration was given to the animals on day 15 in the morning (6am). 4h later the animals were subjected to the 

FST and directly killed after the testing. 

2.3 Antidepressant treatment 

Paroxetine, a commonly used SSRI was chosen for the antidepressant treatment, with the 

exception of the reboxetine experiment (chapter 2.2.3.2). It could be demonstrated 

previously that DBA/2J mice are responsive to oral antidepressant treatment under basal 

and stress-free conditions (Sillaber et al., 2008; Sugimoto et al., 2011; Ohl et al., 2003; 

Yilmazer-Hanke et al., 2003). If not stated differently, paroxetine (Paroxetine 

hydrochloride; Sigma-Aldrich, Germany) or vehicle was (voluntarily self-) administered via 

customized palatable mouse pellets (40mg PQPellets, Phenoquest AG, Martinsried, 

Germany) with different concentrations of paroxetine. The animals were treated with 

5mg/kg BW paroxetine or vehicle for 1, 14 or 28 days twice a day (8am and 6pm) with the 

exception of the dose finding experiment where the animals were treated with a 

concentration of 1mg/kg BW (see 2.2.1.1). Body weight was assessed twice a week and 

according to the animal's body weight, each mouse was assigned to different treatment 

categories to ensure the right dosage for each animal (Table 1). On the last day of 

treatment, the last dosage was administered at 6am, 4h prior the behavioral testing in 

order to avoid acute treatment effects. For chapter 2.2.3.2 Reboxetine was used for the 

antidepressant treatment. Animals were treated twice a day (8am and 6pm) with 2mg/kg 
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BW reboxetine or vehicle for 28 days. Administration procedure was performed in the 

same way as stated for the paroxetine treatments.  

Table 1: Paroxetine and reboxetine treatment categories according to the animal's body weight. Body weight was 

assessed twice a week. Animals were assigned to the respective treatment categories according to their body 

weight. 

 

The consumption of the palatable mouse pellets was monitored after every administration. 

Animals that did not consume the pellets were excluded from the analysis (on average 

10% of the animals). 

2.4 Sampling procedure 

Before sacrificing the animals, they were anesthetized with isoflurane (Abbott GmbH & 

Co. KG, Germany) and decapitated. Trunk blood was collected in 1.5ml EDTA-coated 

microcentrifuge tubes (Kabe Labortechnik, Germany) or PCR-clean 1.5ml tubes filled with 

966µl PAXgene™ solution (ribonucleic acid (RNA) stabilizer reagent) (for detailed 

information see chapters 2.2.4 and 2.7.3.1). All blood samples were immediately placed 

on ice and centrifuged at 8000rpm for 15min at 4°C. Plasma was transferred to clean 

1.5ml microcentrifuge tubes and stored at -20°C until further processing. If not stated 

differently, the animals were sacrificed directly after the FST in order to avoid potential 

alterations in gene expression levels. 

Whole brains were removed and if the left hippocampal formation was extracted (chapter 

2.2.2 and 2.2.4) it was done on ice. The rest of this hemisphere was used for the 

measurement of paroxetine brain tissue concentration. The other hemisphere was 

collected for ISH. Whole brains or dissected brain tissues were immediately snap-frozen 

in pre-cooled 2-methylbutane (Carl Roth GmbH, Germany) and stored at -80°C. For 

immunohistochemistry, animals were deeply anesthetized with isoflurane and slowly 

perfused intracardially with 0.9% saline followed by 4% paraformaldehyde. Brains were 

post-fixed overnight in 4% paraformaldehyde followed by 3 nights incubation in 20% 

sucrose solution at 4°C and then stored at –80°C. 
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2.5 Modeling antidepressant response in mice with the FST  

A large heterogeneity in antidepressant treatment outcome is known from the clinical 

situation. To-date, there are no common approaches to investigate individual 

antidepressant response in mice. Therefore, we raised the question whether the 

heterogeneity in antidepressant treatment outcome can in general be modeled in mice in 

general. We hypothesized that we can modulate this large heterogeneity within a large 

experimental group (Figure 13), and thus mimicking the clinical situation. According to the 

animals' performance in the FST, the animals were divided into good, intermediate and 

poor treatment responders. Animals with a high time floating (top 20%) were classified as 

poor treatment responders, whereas animals that showed a very low time floating (bottom 

20%) were characterized as good treatment responders. Animals that performed like the 

average of the paroxetine treated animals were defined as intermediate treatment 

responders. The animals that performed around the mean of the vehicle treated group 

were used as the non-treated control group. According to the literature, the treatment 

duration seems to play an important role in the clinical situation. Many patients show a 

delayed onset of antidepressant response and most of them do not start responding 

earlier than 3 - 4 weeks after the beginning of the treatment (Taylor et al., 2006). 

However, a minority of patients already show an antidepressant response after 2 weeks of 

antidepressant treatment (so-called "early responder") (Papakostas et al., 2006). These 

clinically relevant time points were considered in this mouse model approach, i.e. a 

chronic antidepressant treatment (28d) and a subchronic antidepressant treatment (14d), 

the latter representing an early antidepressant response. To further mimic the clinical 

situation, the animals were dosed with paroxetine via customized mouse pellets.  
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Figure 13: Illustration of the heterogeneity in the FST of mice. Illustration of the heterogeneity in the FST of mice 

after 4 weeks of antidepressant treatment. This figure illustrates our hypothesis stating that if a large number of 

animals is treated with an antidepressant, in this case paroxetine, the animals will respond differently in the FST. 

Although all of them were treated the same this would postulate that not all of the animals will respond equally to 

the treatment. 

2.6 Behavioral testing 

In this study, various behavioral tests were performed. Tests were accomplished in a 

separate room in which the mice were housed during the testing period. Animals were 

allowed to habituate to the testing room for at least 7 days prior the testing. Housing 

conditions were the same as described for standard housing (see 2.1). All tests were 

performed during the light phase, between 7am and 12am to avoid potential behavioral 

alterations due to circadian variation of corticosterone levels (Barriga et al., 2001). All 

tests were recorded and analyzed (either automatically or manually) with the automated 

video tracking system ANY-maze (ANY-maze 4.5; Stoelting Co., Wood Dale, USA). 

2.6.1 Open field test  

The OF is used to investigate general and basic locomotion of the experimental animal 

(Crawley, 1985). Furthermore, the OF can also be used to screen anxiety related behavior 

in mice. The OF consists of square, enclosed arena (50 x 50 x 50cm) made of gray 

polyvinyl chloride (PVC). For the analysis, the area was virtually divided into a center zone 

(20 x 20cm), which was illuminated with 20lux and an outer zone illuminated with 

approximately 16lux. Animals were placed in the lower left corner of the apparatus at the 

beginning of the testing. The total test duration was 15min. The OF arena was cleaned 

thoroughly with tap water and dried after each animal. The main readout parameters in 
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this test were the preference of the inner zone (analyzed via entries, time, distance) as 

well as total distance traveled. 

2.6.2 Dark-light box  

As the DaLi is based on the conflict of spontaneous explorative behavior in a novel 

environment and the natural aversion of mice to avoid highly illuminated areas, it is a 

common test to investigate anxiety-related behavior in mice (Hascoet et al., 2001). The 

apparatus consists of a small, secure and dark compartment (15 x 20 x 25cm, with 

dimmed light condition < 10lux) and a larger, aversive and brightly illuminated 

compartment (30 x 20 x 25cm, brightly lit with 600lux), which are connected by a 4cm long 

tunnel. Animals were placed in the lower left corner of the dark chamber at the beginning 

of a 10min testing period. The DaLi was cleaned thoroughly with tap water and dried after 

each animal. The main readout parameter in this test was the preference of the light 

compartment (analyzed via latency to enter, total entries, total time, total distance in the lit 

compartment). 

2.6.3 Novelty induced hypophagia 

As the NIH is based on the conflict of the desire of a highly palatable food and the natural 

aversion of mice to avoid highly illuminated areas, it is a common test to investigate 

anxiety-related behavior in mice (Dulawa and Hen, 2005). The apparatus consists of a 

highly illuminated (600 - 1000lux) empty polycarbonate cage (21 x 15 x 14cm) located on 

a white surface to increase the aversiveness. The test comprises three days of habituation 

and two testing days. During the habituation period, the 30% sweetened condensed milk 

was presented to the mice in their home cage for 30min. Consumption was monitored, 

animals that did not consume any condensed milk during the habituation period were 

excluded from the analysis (less than 1%). On the first testing day, the sweetened 

condensed milk was presented to the animals in their home cage for 30min. Latency to 

consume as well as the amount was recorded. Animals that did not consume any 

condensed milk or with a latency of at least 300s were excluded from the analysis (less 

than 1%). On the second day, the mice were placed in the aversive environment for 

30min, again with the highly palatable food. Latency to consume and the total 

consumption of the condensed milk was measured at the end of the testing period. 
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2.6.4 Y-Maze 

The Y-maze test is a common test to investigate hippocampus-dependent spatial memory 

(Dellu et al., 2000; Dellu et al., 1992). The apparatus consisted of three arms (30 x 10 x 

15cm), made of gray PVC, which were arranged in an angle of 120° between two arms. 

This Y-shaped apparatus consisted of three separate zones all connected by a center 

zone. The whole apparatus was evenly illuminated with 15lux to avoid preferences based 

on illumination levels. Each arm was marked differently by easily recognizable symbols 

(triangle, bar and plus-sign). The testing comprises two different trials. During the first trial, 

the acquisition phase, one arm was completely blocked by a gray PVC wall. The mouse 

was placed in the center zone and was allowed to explore the two accessible arms freely 

for 10 minutes before returning to the home cage. After an intertrial interval of 30min mice 

were re-introduced to the apparatus facing one of the already known arms. During this 

retrieval phase (5min), all three arms were accessible. An indicator for spatial memory 

performance was the percentage of time spent in the novel arm compared to the familiar 

arms. Significantly higher percentage than chance level (33.3%) was rated as successful 

spatial memory. 

2.6.5 The Forced Swim Test  

The FST is a common test to model behavioral despair and antidepressant-like behavior 

in rodents (Porsolt et al., 1977a; Porsolt et al., 1977b). It is still the most commonly used 

test paradigm for screening antidepressant action of compounds. A glass beaker (height 

24cm, diameter 13cm) was filled with 21 ± 1°C water up to a height of 15cm, that the 

animal is not able to touch the ground or escape the situation. The animals were gently 

placed in the glass beaker for 5 minutes testing period. After this period, the animals were 

removed, dried and placed back into their home cage. Parameters of interest were time 

swimming, time floating and time struggling. 

2.7 Molecular methods 

2.7.1 Radioimmunoassay 

Radioimmunoassay (RIA) was performed with a commercially available double antibody 

kit with a sensitivity of 6.25ng/ml (ImmunoChemTM Double AntibodyCorticosterone 125I 

RIA Kit, MP Biomedicals, USA) according to manufacturers' manual in order to analyze 

corticosterone concentrations in the plasma of the animals.  
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2.7.2 Paroxetine concentrations in the brain and plasma 

Paroxetine was extracted out of mouse blood or brain according to Uhr et al. (Uhr et al., 

2003). In short, to analyze paroxetine concentrations in the homogenized samples, the 

high-performance liquid chromatography (HPLC) analysis was used. A mobile phase 

gradient was used for the chromatographic analysis of paroxetine and its metabolites. The 

substances and its metabolites were determined by UV absorption or fluorescence at the 

described wavelength. The coefficient of variance was less than 15% for the different 

methods used. To avoid differences due to day-to-day variability, experimental procedure, 

extraction procedure and HPLC were carried out in alternating order (Uhr et al., 2003). 

Plasma and brain samples were calibrated by using spiked samples at different 

concentrations. The concentrations were in the measurement range to the respective 

substances. Quantification was performed by calculating the analyte: internal-standard 

peak-area ratio, and a regression model was fitted to the peak-area ratio of each 

compound to internal standard versus concentration (Uhr et al., 2003).  

2.7.3 RNA isolation 

2.7.3.1 Whole blood 

RNA isolation out of blood was performed with blood samples originating from the 

experiments described in chapter 2.2.4. Trunk blood was collected individually in 1.5ml 

tubes. The blood was further processed according to the PAXgene™ blood miRNA Kit. 

350µl of this freshly collected trunk blood was immediately transferred into 1.5ml tubes 

filled with 966µl PAXgene™ solution (RNA stabilizer reagent), gently inverted 10 times 

and then incubated at RT for 2 – 24 hours and stored at -20°C before RNA isolation 

(Krawiec et al., 2009). Volume ratio of RNA stabilizer reagent to blood samples was kept 

at 2.76 according to the manufacturer’s protocol. RNA was isolated according to Krawiec 

and colleagues (Krawiec et al., 2009). Shortly, frozen samples were brought to room 

temperature for 45min, then inverted several times and then centrifuged at 5000 x g for 

10min at 22°C. The supernatant were aspirated and the pellet was resuspended in 0.5ml 

of RNase-free water by vortexing until the pellets were visibly dissolved. All following 

steps were conducted according to the manufacturers’ manual with the exception that 

proteinase K digestion at 55°C was performed for 60min at 700rpm/min on an Eppendorf 

shaker. The remaining trunk blood of each animal was collected in labeled 1.5ml EDTA-

coated microcentrifuge tubes (Kabe Labortechnik, Germany).  
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2.7.3.2 Whole blood RNA globin reduction 

Blood consists of a heterogeneous cell population of erythrocytes, granulocytes, and other 

peripheral mononuclear cells (PBMC) (Rainen et al., 2002). Due to this heterogeneity it is 

difficult to detect differences in gene expression levels. Blood itself contains a high 

amount of globin mRNA transcripts, which might mask differences in other mRNA 

transcripts. Therefore, we used the Ambion® GLOBINclear™-Mouse/Rat Kit after the 

RNA isolation. Globin reduction was performed according to the manufactures manual. 

Input RNA was quantified before the Globin reduction with a Nanodrop. This globin 

reduced RNA was then further processed, amplified and then used for microarray 

experiments. 

Globin-depleted total RNA was quantified with a Nanophotometer (Nanodrop 2000, Fisher 

Scientific) and quantified and quality-controlled by capillary gel electrophoresis (2100 

Bionanalyzer, Agilent; RNA 6000 nano Assay). The obtained RNA integrity numbers (RIN) 

were greater than 7.5 in all total RNA samples derived from blood before globin depletion 

and dropped slightly after globin depletion (RIN > 6.3 for all samples that were further 

analyzed). 

2.7.3.3 Hippocampus 

RNA isolation out of the left HC was performed with samples originated from the 

experiments described in chapter 2.2.2 and 2.2.4. Hippocampal RNA was isolated using 

the TRIZOL reagent (Invitrogen) as described previously (Schmidt et al., 2010), except 

that the tissue was homogenized with syringes. For RNA quality and integrity analysis 

Agilent 2100 Bioanalyzer (Agilent Technologies, Inc., Waldbronn, Germany) as well as 

RNA Nano LabChips (Agilent Technologies, Inc., Waldbronn, Germany) were used. The 

measurements were performed according to manufacturers' protocol. Among other 

parameters, the 28S:18S ratio of the RNA bands, was analyzed and should lie about 2.0. 

The Agilent software is able to calculate the RIN of the sample by using the 28S:18S ratio 

and other features. Samples with a RIN < 7.0 were excluded from the analysis (less than 

5%). 

2.7.4 RNA amplification 

Globin-depleted RNA as well as hippocampal RNA were labeled and linearly amplified to 

complementary RNA (cRNA) in a commercial form of the classical procedure by Eberwine 
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(Van Gelder et al., 1990). 250ng of RNA was used as input for the Illumina® TotalPrep™-

96 RNA Amplification Kit (Life technologies) and sample processing was performed 

according to the manufacturers' protocol. RNA was again quantified and quality checked 

as performed with total RNA. All samples underwent photometric analysis (Epoch 

Spectrophotometer with Take3 Trio Micro-Volume Plate, BioTek Instruments GmbH) and 

a selected cross section of the samples has been additionally checked on the 

Bioanalyzer. 

2.7.5 cDNA transcription 

The VILOSuperScript Kit (Life Techologies) was used for the transcription of RNA to 

complementary DNA (cDNA) for the quantitative reverse transcription polymerase chain 

reaction (qRT-PCR). The transcription was performed according to the manufacturers' 

protocol. Thereafter, samples were loaded into a thermal cycler, using the protocol 

indicated in the manufacturers' manual. Transcribed cDNA was then stored at -80°C until 

further use. 

2.7.6 Microarray analysis 

For transcriptome analysis the MouseWG-6 v2.0 BeadChips (Illumina Inc.) were used, 

allowing the identification of about 45.281 gene-sequences (50mer oligonucleotides). The 

preparation of the samples for the microarray chips was done according the Illumina 

protocols. Chips were analyzed using the BEADARRAY package (www.bioconductor.org) 

with additional required packages. The animals for the microarray study were part of the 

cohort described in chapter 2.2.2 (poor responders n=13; intermediate responders n=8; 

good responders n=12; vehicle n=9) and 2.2.4 (poor responders n=12; intermediate 

responders n=8; good responders n=12; vehicle n=12) and selected according their 

behavioral performance in the FST and RNA quality. 

The animals selected for the blood microarray were the same animals as used for the 

brain microarray (for details see 2.2.4) except of the intermediate responder group, which 

was not included in this analysis. 

2.7.7 Quantitative reverse transcription PCR 

In order to investigate differences in gene expression levels, quantitative reverse 

transcription PCR (qRT-PCR) was used. 1µl of each cDNA was analyzed with the 

Nanodrop, for quality control. cDNA originated from the same samples as the microarray 



MATERIAL AND METHODS   

 

35 

samples (for details see chapter 2.2.2 and 2.2.4) and were analyzed by qRT-PCR, using 

the QuantiFast SYBR Green PCR Kit (Qiagen GmbH, Hilden, Germany) according to the 

manufacturers' instructions. Experiments were performed in duplicates with the Lightcycler 

2.0 instrument (Roche Diagnostics, Mannheim, Germany) under the following PCR 

conditions: initial denaturation at 95°C for 10min, followed by 40 cycles of denaturation 

(95°C for 10sec) and a combined annealing and extension phase (60°C for 30sec). At the 

end of every run, a melting curve (50 – 95°C with 0.1°C s–1) was generated to ensure the 

quality of the PCR product. Experimental analyses were performed on the crossing points, 

which were calculated by the LightCycler Software 4.0 (Roche Diagnostics GmbH) using 

the absolute quantification fit point method. Noise band and threshold were set to the 

same level in all compared runs. Relative gene expression was determined by the 2−ΔΔCT 

method (Livak and Schmittgen, 2001) using the real PCR efficiency calculated from an 

external standard curve. Crossing points were normalized to the housekeeping gene Hprt. 

All measurements were normalized to vehicle (vehicle being 1) or poor treatment 

responders (poor treatment responders being 1) to provide relative expression levels. 

Primers were designed with the free-online tool Primer3Plus (Rozen and Skaletsky, 

2000). Detailed information for the primer used in this experiment can be found in Table 2 

and Table 3. 
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Table 2: Primers used for quantitative reverse transcriptase PCR in hippocampal brain tissue. The left column 

indicates the most common used symbols in public databases. The middle and right columns indicate the 

sequences of the forward and reversed primers used in the validation experiment. They are represented here in 5' 

to 3' direction. 
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Table 3: Primers used for quantitative reverse transcriptase PCR in peripheral blood. The left column indicates the 

common used symbols in public databases. The middle and right columns indicate the sequences of the forward 

and reversed primers used in the validation experiment. They are represented here in 5' to 3' direction. 

 

2.7.8 In situ hybridization  

Frozen brains were sectioned at -20°C in a cryostat microtome at 18μm, thaw mounted on 

Super Frost Plus slides, dried and stored at -80°C. ISH using a 35S UTP labeled 

ribonucleotide probe for Sox11 (Forward primer: TCATGTTCGACCTGAGCTTG; Reverse 

primer: CACGATAAAGGACGGGAAGA; transcript size: 480 nucleotides) was performed 

as described previously (Schmidt et al., 2007). The slides were exposed to Kodak Biomax 

MR films (Eastman Kodak Co., Rochester, NY) and developed following 6d of exposure. 

Autoradiographs were digitized, and expression was determined by optical densitometry 

utilizing the freely available NIH ImageJ software. The mean of two measurements of two 
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different brain slices were calculated for each animal. The data was analyzed blindly, 

always subtracting the background signal of a nearby structure not expressing the gene of 

interest from the measurements. 

2.7.9 Immunohistochemistry and immunostaining 

Immunohistochemistry was used to quantify AAV-Sox11-induced protein expression. 

Serial coronal sections were cut at 25μm thickness at -20°C. Double-labeling 

immunofluorescence (Goat-anti-Sox11, 1:250, Santa Cruz, C-20; donkey-anti-goat 555, 

1:500, Alexa) was performed on free-floating sections (Sox11 OE n=8; Empty n=8) as 

described previously (Wang et al., 2013).  

BrdU and NeuN immunostaining was performed by Lie and his colleagues according to a 

previously published paper (Garrett et al., 2012). 

2.8 Stereotactic surgery 

To provide a better insight into a putative function of Sox11 in the brain, a region-specific 

overexpression and knockdown of Sox11 in the dorsal DG was achieved by using a 

recombinant AAV. 

2.8.1 Viral vector construct 

Viral overexpression of Sox11 was performed as described previously (Schmidt et al., 

2011b). A custom-made AAV9 vector (preparation according to previously published 

protocols (Foust et al., 2009; Mu et al., 2012a)) was used for this experiment (kindly 

provided by Chichung D. Lie from the University of Erlangen). For the viral knockdown of 

Sox11 an AAV1/2 vector was used (GeneDetect, New Zealand) containing the U6--Mouse 

Sox11 2x shRNA--terminator-CAG-EGFP-WPRE-BGH-polyA. The same vector was used 

for the control groups (SCR group), expressing only EGFP (U6--GeneDetect SCR 2x 

shRNA--terminator-CAG-EGFP-WPRE-BGH-polyA). 

2.8.2 Stereotactic intra-hippocampal injection 

Viral injection was performed according to Monory (Monory et al., 2006). In short, animals 

were deeply anesthetized with isoflurane (Curamed Pharma GmbH, Germany) and 

inserted into a stereotactic frame (TSE system GmbH, Germany). The skull was exposed 

and holes were drilled bilaterally at the injection sites, targeting the dorsal DG of the HC 



MATERIAL AND METHODS   

 

39 

(1.6mm posterior to bregma, 1.3mm lateral from midline, and 1.7mm below the surface of 

the skull). 1µl of the corresponding virus (Titers: > 1.2 × 1012 genomic particles/ml) was 

injected at 0.06μl/min by glass capillaries with tip resistance of 2 - 4MΩ. To avoid reflux, 

class capillaries were removed five minutes after the injection. The wound was sutured 

and treated with iodine. The mice were treated after the surgery for 5 days with 

Metacam® via drinking water. 

2.9 Statistics 

The data presented are shown as means + standard error of the mean, analyzed by the 

commercially available software SPSS 16.0. For comparing two independent groups (e.g. 

vehicle versus paroxetine), data were analyzed with two-tailed, independent samples 

Student's t-test. For the calculation of the mortality rate, the Fisher's exact test was used. 

Therefore, the data was uploaded to the free online calculator tool 

(www.langsrud.com/fisher.htm) and significant level was calculated by generating a 2 x 2 

contingency table. For variables with more than two groups, one-way ANOVA was 

performed followed by Bonferroni post-hoc testing. For more complex datasets (2 x 2 

design; e.g. chapter 2.2.3.4), 2-way ANOVA was used. Correlations were analyzed with a 

two-tailed, bivariate Pearson's correlation analysis. As nominal level of significance p < 

0.05 was accepted, a trend was recognized at p ≤ 0.1. Values outside the 95% confidence 

interval (CI) were defined as statistical outliers and excluded from the analyses.  
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3 Results 

3.1 Antidepressant response in mice - methodological considerations 

In order to validate the novel experimental approach, which aimed to investigate 

antidepressant response in mice, some important questions were raised in the beginning. 

3.1.1 Dosing 

To identify the minimum effective dosage for the DBA/2J mouse strain, male mice were 

randomly distributed to either the vehicle or paroxetine experimental group and were 

treated with different concentrations of paroxetine. 

Trial 1: 1mg/kg BW (twice a day) 

To investigate, whether a very low dose of paroxetine is sufficient to evoke an adequate 

behavioral and pharmacological effect, animals were treated with 1mg/kg BW paroxetine 

(n=30) or vehicle (n=11) for 28 days twice a day (8am and 6pm) and killed on day 29 

directly after the FST (Figure 14A).  

Clinical studies have reported alterations in body weight gain following antidepressant 

treatment (Pijl and Meinders, 1996; Vanina et al., 2002), and therefore we also 

investigated this parameter in our experiment. 28d of paroxetine treatment (1mg/kg BW) 

led to a significant increase in body weight gain in the paroxetine treated animals 

compared to the vehicle treated animals (T39 = -2.490, p < 0.05) (Figure 14B). To analyze 

the effects of a 1mg/kg chronic paroxetine administration on a neuroendocrine level, we 

examined corticosterone levels and did not detect any significant difference between 

vehicle and paroxetine treated animals (Figure 14C). This low paroxetine dosage seems 

to influence physiological parameters, like body weight gain, but was not able to evoke a 

treatment effect on a neuroendocrine level. 

As the FST is the main readout parameter to investigate antidepressant treatment 

response in this model, we analyzed the animals' performance in the FST after 28d of 

antidepressant treatment. Paroxetine treated animals showed a tendency in a lower time 

floating compared to vehicle treated animals (T39 = 1.979, p = 0.55) (Figure 14D), but 

neither time swimming nor time struggling was significantly different between the groups 

(Figure 14E).  
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Figure 14: Neuroendocrine, physiological and behavioral parameters from the dosing experiment (1mg/kg BW). (A) 

Experimental time course of the study. (B) 28d of 1mg/kg BW paroxetine treatment led to an increase in body 

weight gain in the paroxetine treated animals. (C) Corticosterone levels were not altered due to the treatment. (D) 

Paroxetine treatment led to a trend in reduced time floating in the treated animals compared to the control group. 

(E) Chronic treatment did not alter the time struggling in the paroxetine treated group. * significant correlation, p < 

0.05. 

To get a detailed picture of the pharmacological profile of the antidepressant drug in the 

mouse, paroxetine levels were measured in the brain and the plasma of the treated 

animals. The animals were split up by the median in two groups according to their 

performance in the FST. No significant difference was found in paroxetine plasma 

concentrations within the compared groups (Figure 15A). When investigating the brain 
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paroxetine levels, no significant difference was detected among the two different 

behavioral groups (Figure 15B). However, paroxetine brain and plasma concentrations 

were highly correlated (r = 0.869, p < 0.000) (Figure 15C).  

 

Figure 15: Pharmacological profile of 1mg/kg BW in the mouse brain and periphery. (A) Chronic paroxetine 

treatment did not change plasma paroxetine concentrations in the upper median group compared to the lower 

median group. (B) No effect was found in the brain paroxetine concentration among the groups. (C) Higher brain 

concentrations of paroxetine were accompanied by higher plasma paroxetine concentrations. * significant 

correlation, p < 0.05. 

To summarize, we can conclude that 1mg/kg BW was an insufficient dosage to evoke 

robust behavioral treatment effects in our experimental model. 

 

Trial 2: 5mg/kg BW (twice a day) 

As the lower paroxetine concentration did not evoke the intended behavioral phenotype, 

another paroxetine concentration was tested in male DBA/2J mice. This time, 158 mice 

were treated with 5mg/kg BW paroxetine (n=100) or vehicle (n=58) for 28d twice a day 

(8am and 6pm) and were killed on day 29 directly after the FST (Figure 16A). To 

investigate the effects of the higher paroxetine dosage on physiological parameters, the 

body weight was assessed in these animals. 28d of paroxetine treatment (5mg/kg BW) led 

to a significant increase in body weight gain in the paroxetine treated animals compared to 

the vehicle treated animals (T148.587 = -11.263, p < 0.000) (Figure 16B). The higher 

paroxetine dosage was also able to evoke a significant reduction in stress-induced 

circulating corticosterone levels. Paroxetine treated animals showed lower corticosterone 

levels compared to the vehicle treated control group (T143 = 2.129, p < 0.05) (Figure 16C).  

Regarding the behavioral readout of the higher paroxetine dosage, chronic treatment 

significantly reduced the time floating in the paroxetine treated animals compared to the 
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vehicle treated group (T143 = 9.986, p < 0.000) (Figure 16D). Additionally, paroxetine 

treated animals showed a significantly higher level of active behavior compared to the 

vehicle treated animals (Time swimming: T143 = -2.633, p < 0.01, vehicle: 105.59sec ± 

4.70; paroxetine: 119.71sec ± 3.70; Time struggling: T140.984 = -7.820, p < 0.000 (Figure 

16E)). 

 

Figure 16: Neuroendocrine, physiological and behavioral parameters from dosing experiment (5mg/kg BW). (A) 

Experimental time course of the study. (B) 28d of 5mg/kg BW paroxetine treatment led to a significant increase in 

body weight gain in the paroxetine treated animals. (C) Corticosterone levels were significantly reduced in the 

paroxetine treated animals. (D) Paroxetine treatment led to a significant decrease in time floating in the treated 

animals compared to the control group. (E) Chronic treatment significantly increased the time struggling in the 

paroxetine treated group. * significant correlation, p < 0.05. 

After 28d of antidepressant treatment, paroxetine levels were measured in the brain and 

the plasma of the paroxetine treated animals. No significant difference was found in 
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paroxetine plasma concentrations (Figure 17A) or paroxetine brain concentrations (Figure 

17B) between the different responder groups after 28d of paroxetine treatment. However, 

we could show again a correlation between paroxetine brain and plasma concentrations (r 

= 0.905, p < 0.000) (Figure 17C). 

 

Figure 17: Pharmacological profile of 5mg/kg BW in the mouse brain and periphery. (A) Chronic paroxetine 

treatment did not change plasma paroxetine concentrations between the behavioral groups. (B) No effect was 

found in the brain paroxetine concentration among the groups. (C) Higher brain concentrations of paroxetine were 

accompanied by higher plasma paroxetine concentrations. * significant correlation, p < 0.05. 

We could conclude from the dosing experiment that 5mg/kg BW is the minimum effective 

dosage that evoked a robust physiological, neuroendocrine as well as behavioral 

phenotype in the DBA/2J mouse strain.  

3.1.2 Acute antidepressant administration 

As acute antidepressant applications are widely used in animal studies, we were 

interested whether an acute paroxetine administration via the mouse pellets evokes the 

same behavioral effects as already found in the literature (Cryan et al., 2005; Slattery and 

Cryan, 2012). Therefore, 80 male DBA/2J mice were treated with 5mg/kg BW paroxetine 

(n=30) or vehicle (n=50) (Figure 18A). 

When investigating physiological parameters, we did not detect a significant difference in 

body weight gain between the groups. The same counted for neuroendocrine parameters. 

We did not find any difference in corticosterone concentrations after an acute 

antidepressant treatment (Figure 18B).  

However, an acute paroxetine administration was able to evoke a behavioral response in 

the FST. Paroxetine treated animals showed a reduction in time floating compared to the 

vehicle treated control animals (Figure 18C) (T75 = 3.590, p< 0.001) and increased active 
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behavior (time swimming T75 = -2.526, p < 0.05, vehicle: 112.05sec ± 4.74; paroxetine: 

133.48sec ± 7.61 and time struggling: T75 = -2.019, p < 0.05) (Time struggling is shown as 

a representative for active behavior Figure 18D). 

 

Figure 18: Neuroendocrine, physiological and behavioral parameters after acute paroxetine treatment (5mg/kg BW). 

(A) Experimental time course of the study. (B) Acute paroxetine treatment (5mg/kg BW) did not alter corticosterone 

levels. (C) Paroxetine treatment reduced the time floating in the FST in the treated animals compared to the control 

group. (D) Acute treatment also led to an alteration in time struggling in the paroxetine treated group. * significant 

difference from vehicle treated control group, p < 0.05. 

 

To further investigate the pharmacology of the antidepressant drug in the mouse, 

paroxetine levels were measured in the brain and the plasma. Treated animals were split 

up by the median in two groups according to their performance in the FST. For plasma 

paroxetine levels, no difference was found between the groups, although the upper 

median group showed a tendency to a higher paroxetine plasma concentrations (T23 = 

1.965, p = 0.062) (Figure 19A). A significant difference in paroxetine concentrations was 

detected in the brain. Animals subjected to the upper median group showed higher brain 

paroxetine levels (T23 = 2.167, p > 0.05) compared to the lower median group (Figure 
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19B). Nevertheless, we could again demonstrate that paroxetine brain and plasma 

concentrations were highly correlated (r = 0.861, p < 0.000) (Figure 19C).  

 

Figure 19: Pharmacological profile of an acute 5mg/kg BW in the mouse brain and periphery. (A) Acute paroxetine 

treatment did not change plasma paroxetine concentrations between the groups. (B) Animals subjected to the 

upper median group showed significantly higher brain paroxetine concentration compared to the lower median 

group. (C) Higher brain concentrations of paroxetine were accompanied by higher plasma paroxetine 

concentrations. * significant difference between lower and upper median, significant correlation, p < 0.05. 

3.1.3 Acute i.p. injection versus acute mouse pellet 

I.p. injection is one of the most common tools in preclinical science for pharmacological 

drug application. To ensure that the mouse pellet is a comparable tool to the commonly 

used i.p. injection, 10 male mice were injected once with 5mg/kg BW paroxetine. 30 male 

DBA/2J mice served as a control group (see detailed results in chapter 3.3). I.p. injected 

animals showed significantly higher plasma paroxetine levels (T33 = 2.863, p < 0.01) and 

brain paroxetine levels (T33 = 3.740, p < 0.01) compared to the animals treated with the 

mouse pellet (Figure 20A-B). We could again show that plasma and brain paroxetine 

concentrations are correlated (r = 0.883, p < 0.01) after an acute i.p. injection (Figure 

20C). These findings are in line with our previous findings from the mouse pellets. 
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Figure 20: Pharmacological profile of an acute 5mg/kg BW in the mouse brain and periphery. (A) Acute i.p. 

paroxetine treatment led to higher plasma paroxetine concentrations compared to the mouse pellet treated group. 

(B) Acute i.p. paroxetine treatment led to higher brain paroxetine concentrations compared to the mouse pellet 

treated group. (C) After acute i.p. injection of 5mg/kg BW higher brain concentrations of paroxetine were 

accompanied by higher plasma paroxetine concentrations. *significant difference between i.p. injected group and 

mouse pellet group, * significant correlation, p < 0.05. 

3.1.4 Half-life study 

After we had identified the minimum effective dosage for the DBA/2J mouse strain 

(5mg/kg BW), we were aiming to get a better understanding of the pharmacokinetics of 

paroxetine especially with regard to pharmacological half-life of paroxetine within the 

mouse organism. 20 male DBA/2J mice were treated chronically with 5mg/kg BW 

paroxetine twice a day and were killed 1d (n=5), 3d (n=5), 7d (n=5) or 14d (n=5) after 

discontinuation of the paroxetine treatment (Figure 21A). One day after discontinuation of 

the antidepressant, the animals showed a 50% reduction of the paroxetine levels 

compared to the measured values right after the FST. Paroxetine plasma are no longer 

detectable from day 3 on (Figure 21B). Paroxetine was detectable a little bit longer in the 

brain, although there was very little left after 3 days of discontinuation of the treatment 

(Figure 21C). 
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Figure 21: Pharmacological profile after discontinuation of 28d paroxetine treatment (5mg/kg BW) in the mouse 

brain and periphery. (A) Experimental time course. (B) Paroxetine plasma levels showed a 50% reduction of the 

paroxetine levels compared to the paroxetine levels data set right after the FST one day after withdrawal of the 

antidepressant. Already three days after discontinuation of the treatment, no more paroxetine could be detected in 

these animals. (C) Brain paroxetine levels showed a 50% reduction of the paroxetine levels compared to the 

paroxetine levels data set right after the FST one day after discontinuation of the antidepressant. Three days after 

discontinuation of the treatment a small amount of paroxetine could still be detected in these animals. 

3.1.5 The FST as a valid readout for antidepressant treatment outcome in mice 

In order to analyze whether the differences in individual antidepressant treatment 

response is due to pre-existing inherent behavioral characteristics, 60 animals were 

subjected to a FST and following one week of recovery treated for 28d with either 

paroxetine (n=40) or vehicle (n=20). After the treatment period the animals were screened 

in a second FST (Figure 22A). After the 28d treatment period, paroxetine treated animals 

showed a lower time floating (T47 = 4.695, p < 0.000) and higher time struggling compared 

to the vehicle treated animals (T47 = -2.026, p < 0.05) (Figure 22B-C). Furthermore, time 

swimming was also increased in the paroxetine treated animals compared to the vehicle 

treated control group (T47 = -2.328, p < 0.05, vehicle: 117.56 ± 11.54; paroxetine: 152.59 ± 

9.48). As the time floating is our main readout parameter in this experimental design, we 

correlated the time floating of the animals under basal conditions with the time floating 

after the paroxetine treatment. Our results did not show any significant correlation in the 

investigated parameters (r = 1.80, p = 0.340) (Figure 22D).  
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Figure 22: Behavioral profile of a repeated FST after 28d of paroxetine treatment (5mg/kg BW). (A) Experimental 

time course. (B) Time floating in the second FST following 28d of paroxetine treatment. Paroxetine treated animals 

showed significant lower time floating compared to the vehicle treated control group. (C) Time struggling in the 

second FST. Paroxetine treated animals showed significant higher time struggling compared to the vehicle treated 

control group. (D) When correlating the time floating in the FST before and after the paroxetine treatment, no 

correlation was found between the performance of the animals. * significant difference between vehicle treated 

control group and paroxetine treated group, p < 0.05. 

3.2 Genes and pathways modulated after chronic paroxetine treatment 

In a next step, we were interested in genes and pathways that are differently regulated in 

good and poor responders as well as between vehicle and paroxetine treated animals 

after a chronic antidepressant treatment. 

3.2.1 Microarray analysis 

158 mice were treated with 5mg/kg BW paroxetine (n=100) or vehicle (n=58) for 28d twice 

a day (8am and 6pm) and were killed on day 29 directly after the FST. For detailed 

information and results see chapter 3.1.1, as the here described animals were part of this 

cohort. As we were aiming to identify novel genes and pathways, mediating an individual 

antidepressant response, we investigated the individual behavior of the animals. After 

identifying good (n=12), poor (n=13) and intermediate (n=8) treatment responders as well 

as the vehicle treated control group (n=9) (for detailed information see 2.5) a whole 
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genome gene expression microarray was conducted with hippocampal brain tissue 

(Figure 23).  

 

Figure 23: Identification of different responder groups according to their performance in the FST. Animals indicated 

in the red squares are referred as good and poor treatment responder. Animals that showed a very high time 

floating represented the poor treatment responder, whereas animals that showed a very low time floating 

represented the good treatment responder. Animals indicated with the green dotted squares are representing 

internal control groups. The animals within the paroxetine treated group are representing the intermediate 

responder group and served as a treated control group. The animals within the vehicle treated group served as a 

vehicle treated control group. 

Analysis of the Illumina microarray chip revealed 36 regulated genes between vehicle 

treated animals and good responder at a false discovery controlled significant level of 

10% (q < 0.1). Duplicates were removed in a next step (n=2) as well as genes that were 

detected by the microarray but were not specific for the respected gene (n=4), resulting in 

30 differentially regulated genes. A detailed gene list containing all relevant parameters 

can be found in Table 4. 
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Table 4: Significantly regulated genes in the hippocampal DG region 28d after paroxetine treatment. Genes are 

ordered by their functional classes. Fold Change is normalized to vehicle treated animals. 

 

We did not detect any significant difference between good and poor treatment responders 

after correcting for multiple testing. 

3.2.2 Validation of potential candidates with qRT-PCR 

12 genes were selected for further investigation. The selection was based on the gene 

expression pattern (www.brain-map.org) as well as evidences from the literature that 

these genes are involved in pathophysiological processes, which have been linked to the 

neurobiology of psychiatric disorders, such as neurogenesis, receptor activity, immune 

system or intracellular signaling. In a next step, we performed qRT-PCR with the same 

samples to validate the microarray results in a technical control replicate. Therefore, we 
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investigated mRNA expression levels with normalization to the housekeeper gene Hprt. 

We were able to validate 9 out of the 12 selected candidates. Acvr1c was significantly 

upregulated in the good treatment responders after 28d of paroxetine treatment compared 

to the vehicle treated control group (T19 = -5.5570, p < 0.000) (Figure 24A). The same 

regulation pattern was found for Adra2c (T13.336 = -3.125, p < 0.01) (Figure 24B), C1ql2 

(T19 = -3.043, p < 0.01) (Figure 24E), Igfbp6 (T18 = -3.481, p < 0.005) (Figure 24G), 

Serpina3n (T11.903 = -2.891, p < 0.05) (Figure 24J), Serpinf1 (T11.658 = -3.421, p < 0.005) 

(Figure 24K) and Sox11 (T12.056 = -4.775, p > 0.000) (Figure 24L). However, we also 

detected genes that showed a significant downregulation in the good treatment responder 

after 28d of paroxetine compared to the vehicle treated control group, such as Cort (T18 = 

3.734, p < 0.005) (Figure 24D) and Pnck (T19 = 4.853, p < 0.000) (Figure 24I). Arsj (Figure 

24C), Drd1a (Figure 24F) and Mylk (Figure 24H) did not show any significant gene 

expression alterations between the two compared groups.  
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Figure 24: Validation of candidate genes from the microarray. From 12 selected candidates, the mRNA of 9 

transcripts were significantly regulated in the hippocampus after 28d of paroxetine treatment (A-L). * significant 

different to vehicle treated control animals p < 0.05. 
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3.3 Sox11 as a potential novel candidate mediating antidepressant action 

Evidences from the literature (Sha et al., 2012; Mu et al., 2012b; Kuhlbrodt et al., 1998; 

Jankowski et al., 2006; Haslinger et al., 2009) suggests a potential role of Sox11 in adult 

neurogenesis, thereby we selected Sox11 as a very interesting candidate for further 

investigations. Consequently, we were interested if different paroxetine treatment 

durations can also influence Sox11 gene expression. 

3.3.1 Chronic paroxetine treatment leads to a robust upregulation of Sox11 

To verify the upregulation of Sox11 after 28d of paroxetine treatment, brain samples 

originating from two independent experiments were used for ISH. The first samples 

derived from the microarray experiment, but were not selected for the microarray analysis 

itself. Here, we showed that paroxetine lead to a significant increase in Sox11 mRNA 

levels in the DG compared to the vehicle treated control group (T17 = -3.932, p < 0.005) 

(Figure 25A and C). We also investigated other hippocampal areas, but did not find a 

significant difference between the groups. After further evaluation Sox11 mRNA levels in 

the different responder groups, we were not able to detect a significant difference between 

good and poor responders. The second independent sample derived from chapter 3.1.5. 

Here, we also detected a significant difference in the DG between the treated animals 

(n=14) and the vehicle treated control group (n=20) (T32 = -6.283, p < 0.000) (Figure 25B 

and D). Additionally to the DG, we found a significant increase in Sox11 mRNA 

expression in the paroxetine treated animals in the CA1 region of the HC (T17.593 = -3.671, 

p < 0.01, vehicle: 11.75 ± 1.01; paroxetine: 21.34 ± 2.41). 

 

Figure 25: Sox11 mRNA expression after chronic treatment. (A-B) Chronic paroxetine treatment resulted in an 

increase in Sox11 mRNA expression levels compared to the vehicle treated control group. (C-D) Pictures show 

representative autoradiographs of Sox11 expression in the hippocampus of vehicle and paroxetine treated animals. 

* significant difference between vehicle treated control group and paroxetine treated group, p < 0.05. 
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3.3.2 Subchronic paroxetine treatment leads to higher Sox11 mRNA expression 

In a next step we were interested in the time course of paroxetine-induced regulation, i.e. 

the question whether Sox11 is already upregulated after subchronic treatment. Therefore, 

ISH was performed on brains obtained from chapter 2.2.4. After 14d of drug 

administration increased Sox11 mRNA expression levels were found in paroxetine treated 

animals (n=30) compared to the vehicle treated control group (n=12) (T40 = -2.958, p < 

0.01) (Figure 26A-B). A significant increase in Sox11 mRNA expression was also detected 

in the hippocampal CA1 region of the paroxetine treated animals (T40 = -2.875, p < 0.01, 

vehicle: 7.70 ± 0.92; paroxetine: 11.76 ± 0.81). 

 

 

Figure 26: Sox11 mRNA expression after subchronic treatment. (A) Subchronic paroxetine treatment resulted in 

increased Sox11 mRNA expression levels compared to the vehicle treated control group. (B) Pictures show 

representative autoradiographs of Sox11 expression in the HC of vehicle and paroxetine treated animals. * 

significant difference between vehicle treated control group and paroxetine treated group, p < 0.05. 

 

3.3.3 Acute paroxetine treatment does not alter Sox11 gene expression 

We could show that Sox11 is already upregulated after 14d of paroxetine treatment and 

this persists at least until 28d of paroxetine treatment. Subsequently, we were interested if 

this upregulation is already present after one acute dosage of paroxetine. Therefore, ISH 

was performed on brains obtain from chapter 2.2.1.3. Acute paroxetine administration has 

no influence on Sox11 mRNA expression in the HC (Figure 27). 
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Figure 27: Sox11 mRNA expression in the hippocampal DG after acute treatment. Acute paroxetine administration 

did not influence Sox11 mRNA expression levels.  

3.3.4 Sox11 upregulation is a SSRI specific effect 

We demonstrated in the previous chapters that paroxetine is regulating Sox11 mRNA 

expression in the mouse DG. Subsequently, we were interested whether the gene 

expression changes are SSRI specific effects or if the change in gene expression are due 

to antidepressants in general.  

Therefore, 25 male DBA/2J mice were treated twice a day for 28d with either vehicle 

(n=10) or 2 mg/kg BW reboxetine (n=15), a norepinephrine reuptake inhibitor (Figure 

28A). Regarding physiological parameters, reboxetine did not alter body weight gain 

between the vehicle and reboxetine treated animals (Figure 28B). Moreover, we did not 

detect any difference in corticosterone concentrations after chronic reboxetine treatment.  

However, chronic reboxetine administration was able to evoke a behavioral response in 

the FST. Reboxetine treated animals showed a significant increase in time struggling 

compared to the vehicle treated control animals (Figure 28C) (T22 = -4.301, p< 0.000) but 

interestingly vehicle treated animals showed a significant increase in time swimming (T22 = 

3.219, p < 0.005). No significant difference was found between the groups in time floating 

(Figure 28D). Nevertheless, reboxetine treated animals showed a significant increase in 

the latency to float in the FST (T21 = -2.316, p < 0.05) compared to the vehicle treated 

animals (Figure 28E). As depression often shows a high comorbidity with anxiety, we 

were also interested in the effects of reboxetine on anxiety-related behavior and therefore 

tested these animals in the DaLi. However, we did not detect any differences between the 

groups in anxiety-like behavior (Figure 28F).  
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In order to investigate the effects of reboxetine on Sox11 mRNA expression levels, ISH 

was performed. We did not detect any differences in Sox11 mRNA expression in the HC 

between vehicle and reboxetine treated animals (Figure 28G).  
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Figure 28: Physiological and behavioral effects of chronic reboxetine treatment. (A) Experimental time course. (B) 

Reboxetine did not alter body weight gain between the vehicle and reboxetine treated animals. (C) Chronic 

reboxetine administration was able to evoke a behavioral response in the FST. Paroxetine treated animals showed 

a significant increase in time struggling compared to the vehicle treated control animals. (D) No significant 

difference was found between the groups in time floating. (E) Reboxetine treated animals showed a significant 

increase in latency to float in the FST compared to the vehicle treated animals. (F) When investigating the effects of 

reboxetine on anxiety-related behavior in the DaLi, we did not detect any differences between the groups. (G) 

Reboxetine did not alter Sox11 mRNA expression levels. * significant difference between the vehicle treated control 

and the reboxetine treated group, p < 0.05. 
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3.3.5 Viral overexpression of Sox11 leads to a less anxious phenotype 

We could show a paroxetine-induced upregulation of Sox11 as well as the reduction in 

depressive-like behavior in the FST in the previous chapters. As a consequence, we 

examined whether a virus-mediated OE of Sox11 mimics the same behavioral phenotype 

as the paroxetine treatment. Therefore, we performed a region-specific OE of Sox11 in 

the hippocampal DG, by using AAV-9 Sox11OE (n=23) or empty control (n=20) injections 

(Figure 29C). ISH confirmed a stable overexpression of Sox11 in the DG region (T28 = -

8.835, p < 0.000) (Figure 29A-B), with some spreading in the CA3 region of the 

hippocampal formation (T13.507 = -18.105, p < 0.000). Furthermore, we additionally 

controlled for the viral OE by immunofluorescence (Figure 29D). 

 

Figure 29: Sox11 OE in the dorsal HC. (A) Sox11 mRNA expression levels in the dorsal HC. (B) Representative 

autoradiographs of Sox11 mRNA levels in the dorsal HC of control and Sox11 OE animals. (C) Schematic 

representation of the injection site (green). (D) Visualization of Sox11 expression in the HC 8 weeks after the 

injection of control (top row) and Sox11 OE (lower row). * significant difference between Empty control group and 

Sox11 OE group, p < 0.05. 

Animals were tested in the OF to investigate general locomotor activity. We could show 

that the viral overexpression of Sox11 did not change locomotor activity (Figure 30B). 
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Additionally, we analyzed the parameters of the inner zone in OF apparatus, which are 

also commonly used parameters to investigate anxiety-like behavior. Sox11 OE animals 

showed a reduced latency to enter the inner zone (T33 = 2.130, p < 0.05) (Figure 30C) as 

well as a longer distance travelled in the inner zone (T41 = -2.087, p < 0.05) (Figure 30D). 

Furthermore, they showed a tendency to spend more time in the inner zone (trend: T40 = -

1.944, p = 0.059). To verify this anxiety-like phenotype, we tested the animals additionally 

in the DaLi. Here, the Sox11 OE animals entered the light compartment more often 

compared to the empty control animals (T41 = -2.142, p < 0.05) (Figure 30E). Moreover, 

the Sox11 OE spent more time in the light compartment compared to the control animals 

(T41 = -2.521, p < 0.05) (Figure 30F). Sox11 OE animals also travelled more in the light 

compartment compared to their empty control group (T37.824 = -2.457, p < 0.05) (Figure 

30G).  



RESULTS   

 

61 

 

Figure 30: Sox11 OE in the dorsal HC led to a less anxious phenotype. (A) Experimental time course. (B) Sox11 OE 

had no influence on general locomotion. (C) When analyzing the inner zone of the OF, Sox11 OE animals showed a 

reduced latency to enter the inner zone (D) as well as a longer distance travelled in the inner zone. (E) Viral OE of 

Sox11 led to a less anxious phenotype in DaLi compared to the empty control animals. Sox11 OE animals entered 

the light compartment more often compared to the Empty control animals. (F) Sox11 OE showed a significant 

increase in time spent in the light compartment compared to the control group. (G) Additionally, Sox11 OE travelled 

more in the light compartment compared to their Empty control group. * significant difference between Empty 

control group andSox11 OE group, p < 0.05. 

To investigate depressive-like behavior in these animals, we subjected them to a FST but 

no significant difference was found between Sox11 OE and the Empty control group 

(Figure 31A-B).  
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Figure 31: Sox11 OE had no effect on depressive-like behavior. (A) There was no significant difference between 

Empty and Sox11 OE animals in the time spent floating. (B) No significant difference was found between Empty 

and Sox11 OE animals in the time spent struggling. 

Additionally to the DaLi a NIH test was performed. However, we did not find any 

significant difference between the two groups in the NIH (Figure 32A-B). 

In order to exclude any cognitive deficits in these animals, we subjected them to a Y-

Maze. To investigate whether short-term memory performance is still intact in these 

animals, an inter-trail interval of 30min between the acquisition and the retrieval phase 

was applied. Both control and Sox11 OE animals performed better than chance level, as 

they spent significantly more time exploring the novel arm of the Y-Maze. However, we did 

not detect any difference between the two groups (Figure 32C-D).  
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Figure 32: Effects of Sox11 OE in the NIH and the Y-Maze. (A) No significant difference was found between the two 

groups in the latency to consume the sweetened condensed milk in the NIH. (B) Both groups consumed the same 

amount of sweetened condensed milk in the NIH. (C) Both testing groups performed better then chance level in the 

Y-Maze. Sox11 OE and Empty animals travelled more in the novel arm (D) and entered the arm more frequently 

compared to the already known arms. 

3.3.6 Sox11 OE and its influence on neurogenesis  

As there are evidences from the literature that Sox11 is involved in neurogenesis 

(Haslinger et al., 2009), we were interested, whether a region-specific overexpression of 

Sox11 in the DG also increases the neurogenesis rate. Therefore, 23 male DBA/2J mice 

were injected with either an AAV9-Sox11OE or AAV9-empty. After 4 weeks of recovery, 

the animals were then injected on 3 consecutive days with 100mg/kg BrdU pulse (Figure 

33A). 16 animals (Sox11OE n=8; Empty control n=8) were perfused on the last day of the 

BrdU pulse, 2 hours after the last injection (Figure 33A). This time point was chosen to 

analyze the proliferation rate as a consequence of the viral OE of the Sox11. However, we 

were not able to detect any differences in BrdU positive cells between the groups. Sox11 
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OE has no influence on the proliferation rate of NSPCs compared to the Empty control 

animals (Figure 33B-D). 

 

Figure 33: Influence of Sox11 OE on neurogenesis. (A) Experimental time course. (B) Sox11 OE had no influence on 

proliferation status. (C) BrdU immunoreactivity in the dentate gyrus 2 hours after the last BrdU pulse. (D) 

Visualization of Sox11 expression in the hippocampus of control (top row) and Sox11 OE (lower row) 4 weeks after 

the surgery (Scale: 1µm = 4.818pixel). 

7 animals (Sox11OE n=4; Empty control n=3) were perfused 28d after the last day of the 

BrdU pulse (Figure 34A). This time point was chosen to analyze the maturation status as 

a consequence of the viral OE of the Sox11. However, we did not detect any differences 

in the percentage of BrdU+ and NeuN+ cells in the BrdU+ labeled cells between the 

groups. The percentage of novel produced neurons (NeuN+ labeled cells, as NeuN is a 

marker for neurons) was the same in the compared groups. In order to test, whether an 

overexpression of Sox11 is leading in general to a higher number of BrdU+ cells and thus 

more cells, further staining and investigations needs to be performed. However, at this 

stage we can say, that within the novel produced cells (BrdU+ cells), there is no difference 

in NeuN+ labeled cells between the groups (Figure 34B).  
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Figure 34: Influence of Sox11 OE on neurogenesis. (A) Experimental time course. (B) Sox11 OE had no influence on 

proliferation status. 

 

3.3.7 Viral knockdown of Sox11 in combination with paroxetine treatment 

Sox11 OE seems to be an important factor in modulating anxiety-related behavior, as we 

could show in the previous chapter. Consequently, we performed a Sox11 KD to further 

elucidate its role in anxiety-like behavior and even more, whether paroxetine is able to 

reverse this hypothesized phenotype. Therefore, we performed a region-specific KD of 

Sox11 in the dorsal DG, by using an AAV-1/2 (n=35) or an SCR control (n=34) injection 

(Figure 35C). ANOVA analysis revealed a significant downregulation of Sox11 in the DG 

region (F1,36 = 12.674, p < 0.001) (Figure 35A, B), with some spreading in the CA3 region 

of the hippocampal formation. KD efficiency in the DG was 30%.  
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Figure 35: Sox11 KD in the dorsal hippocampus. (A) Sox11 mRNA expression levels in the dorsal HC. (B) 

Representative autoradiographs of Sox11 mRNA levels in the dorsal HC of vehicle and paroxetine treated animals 

as well as SCR control and Sox11 KD animals. (C) Schematic representation of the injection site (green). # 

significant ANOVA condition effect, p < 0.05. 

We detected an increase in body weight gain after paroxetine treatment in the previous 

experiments. Therefore, we were also interested in this parameter after 28d of paroxetine 

treatment under Sox11 KD and control conditions. ANOVA analysis revealed a significant 

treatment effect in the paroxetine treated animals compared to the vehicle treated control 

group, independent of the condition (F1,43 = 10.264, p < 0.01) (Figure 36B). To analyze 

whether the Sox11 KD lead to any locomotor changes, we subjected the animals to the 

OF. ANOVA analysis revealed a significant treatment effect (F1,43 = 4.887, p < 0.05) but no 

condition or condition x treatment interaction effect (Figure 36G). Further, paroxetine 

treated animals were less immobile in the OF compared to vehicle treated animals (F1,43 = 

4.585, p < 0.05, Sox11 OE vehicle: 169.22sec ± 21.76; Sox11 OE paroxetine: 148sec ± 

10.55; SCR vehicle: 169.22sec ± 27.84; SCR paroxetine: 145.49sec ± 18.38).  

As Sox11 OE led to a less anxious phenotype, we hypothesized that Sox11 KD would 

lead to a more anxious phenotype. Additionally, we were interested whether a chronic 

paroxetine treatment is able to reverse this effect. Therefore, we tested the animals in the 

DaLi. ANOVA analysis revealed a condition effect in the parameters distance in the light 

compartment (F1,46 = 4.180, p < 0.05), entries in the light compartment (F1,46 = 24.290, p < 

0.05) (Figure 36E) as well as time in the light compartment (F1,46 = 4.479, p < 0.05) (Figure 

36F). Paroxetine treatment did not influence anxiety-related behavior in this test. In order 

to investigate, depressive-like behavior in these animals we subjected them in a FST. 

ANOVA revealed that paroxetine treated animals showed significantly more time 

struggling compared to vehicle treated animals (F1,42 = 23.222, p < 0.000) (Figure 36C). 

This effect was independent of the genetic manipulation. Furthermore, we found that 

paroxetine treated animals floated significantly less time compared to vehicle treated 
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animals (F1,42 = 22.967, p < 0.000) (Figure 36D) and showed a longer latency to float (F1, 41 

= 8.305, p < 0.01) (Sox11 KD vehicle: 90.32sec ± 8.61; Sox11 KD paroxetine: 110.45sec 

± 13.10; SCR vehicle: 81.65sec ± 9.35; SCR paroxetine: 112.12sec ± 7.64). 
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Figure 36: Physiological and behavioral effects of Sox11 KD. (A) Experimental time course. (B) Paroxetine led to an 

increase in body weight gain compared to vehicle treated animals, independent of the genotype. (C) Paroxetine led 

to more time struggling in the FST compared to vehicle treated animals, independent of the genotype. (D) 

Paroxetine led to a decrease in time floating compared to vehicle treated animals, independent of the genotype. (E) 

Viral KD of Sox11 led to a more anxious phenotype in DaLi compared to the empty control animals, whereas 

paroxetine was not able to reverse this effect. (F) When comparing entries in the light compartment, no significant 

difference could be found between the groups. (G) Paroxetine treated animals showed a higher general locomotor 

activity compared to vehicle treated control animals. This effect is independent of the condition. # overall ANOVA 

condition effect, p < 0.05, § overall ANOVA treatment effect, p < 0.05 
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During this study, we detected a higher mortality rate in the Sox11 KD animals, reflected 

by 9 (of 35) compared to 0 (of 34) in the SCR control animals (Fisher's exact test: p < 

0.005).  

3.4 Genes and pathways mediating an early onset of antidepressant 
response 

The previous studies demonstrated that a 28d treatment regiment is well-suited to detect 

novel antidepressant-responsive genes. However, in order to differentiate between good 

and poor responders and even more to identify potential candidates mediating a more 

rapid onset of action, a shorter treatment period may be more promising. There is 

evidence from clinical studies, that some patients start responding to an antidepressant 

treatment already after 14d of antidepressant administration (Papakostas et al., 2006). 

According to this finding, we treated 140 male DBA/2J mice subchronically (14d) with 

5mg/kg BW paroxetine (n=90) or vehicle (n=50) (Figure 37A). 

To analyze the effects of subchronic paroxetine treatment on physiological parameters, 

body weight gain was assessed in these animals. 14d of paroxetine treatment (5mg/kg 

BW) led to a significant increase in body weight gain in the paroxetine treated animals 

compared to the vehicle treated animals (T105 = -8.356, p < 0.000) (Figure 37B). However, 

a subchronic paroxetine treatment did not significantly reduce corticosterone levels in the 

paroxetine treated animals compared to the vehicle treated control group. (Figure 37C).  

We also investigated paroxetine brain and plasma levels after a subchronic treatment. 

ANOVA analysis showed a significant increase in plasma paroxetine concentrations in 

good responders compared to the intermediate responder group and the poor responder 

group (F2,25 = 3.691, p < 0.05). Further post-hoc analysis revealed a trend between good 

responders compared to the intermediate responder group and the poor responder group. 

No significant difference was found between the intermediate and the poor responder 

groups (Figure 37D). The same pattern was detected for paroxetine brain concentrations. 

Good responders showed significantly higher brain paroxetine concentrations compared 

to the intermediate responders and the poor responders (F2,32 = 7.777, p < 0.01). Further 

post-hoc analysis revealed a significant difference between good responders compared to 

the intermediate responder group and the poor responder group. No significant difference 

was found between the intermediate and the poor responders (Figure 37E). However, 

paroxetine brain and plasma concentrations were highly correlated (r = 0.554, p < 0.000) 
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(Figure 37F). For the here presented correlation analysis, we only analyzed poor and 

good responders.  
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Figure 37: Neuroendocrine, physiological and pharmacological parameters after subchronic paroxetine treatment. 

(A) Experimental time course. (B) Paroxetine treated animals showed a significant increase in body weight gain 

compared to vehicle treated animals. (C) No difference was found in corticosterone levels between the groups. (D) 

Good responders showed significantly higher plasma paroxetine levels compared to poor and intermediate 

responders. (E) Good responders showed significantly higher brain paroxetine levels compared to poor and 

intermediate responders. (F) Paroxetine brain and plasma concentrations highly correlated with each other. * 

significant difference between vehicle treated control group and paroxetine treated group, p < 0.05. 
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To investigate the responder status within the paroxetine treated group, we subjected the 

animals to a FST. Overall, paroxetine treated animals showed significantly less time 

floating compared to vehicle treated control animals (T80.701 = 9.157, p < 0.000) (Figure 

38A and C). Furthermore, paroxetine treated animals also showed more active behavior 

compared to vehicle treated animals. The time swimming was increased in paroxetine-

treated animals (T105 = -5.112, p < 0.000, vehicle: 112.05sec ± 4.74; paroxetine: 

147.80sec ± 4.99;) as well as the time struggling (T102.624 = -4.496, p < 0.000) (Figure 

38B).  

 

Figure 38: Subchronic paroxetine treatment led to a less depressive-like behavior in the FST. (A) Paroxetine treated 

animals showed less time floating compared to vehicle treated animals. (B) Paroxetine treated animals showed 

higher time floating compared to vehicle treated animals. (C) Identification of different responder groups according 

to their performance in the FST. Animals indicated in the red squares are referred as good and poor treatment 

responder. Animals that showed a very high time floating represent the poor treatment responder, whereas animals 

that showed a very low time floating represent the good treatment responder. Animals indicated in the green dotted 

square are representing internal control groups. The animals within the paroxetine treated group are representing 

the intermediate responder group and served as a treated control group. The animals within the vehicle treated 

group served as a vehicle treated control group. * significant difference between vehicle treated control group and 

paroxetine treated group, p < 0.05. 
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3.4.1 Brain Microarray analysis 

The animals used for the Microarray analysis were part of the in the previous chapter 

described cohort. As we were aiming to identify novel genes and pathways determining 

early antidepressant response, we were interested in the individual time floating in the 

FST of these animals. After identifying good (n=12), poor (n=12) and intermediate (n=8) 

treatment responders as well as the vehicle treated control group (n=12) (for detailed 

information see 2.5) a whole-genome expression microarray was conducted with 

hippocampal brain tissue (Figure 38C). Analysis of the Illumina microarray chip revealed 

101 differently regulated genes between vehicle treated animals and good responders at 

a false discovery controlled significant level of 10% (q < 0.1). Duplicates were removed in 

a next step (n=10) as well as genes that were detected by the microarray but were not 

specific for the respected gene (n=4). Resulting in 87 differentially regulated genes. A 

detailed gene list containing all relevant parameters can be found in Table 5. There were 

no significant differences between good and poor treatment responders. 
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Table 5: Significantly regulated genes in the hippocampal DG region 14d after paroxetine treatment. Genes are 

ordered by their functional classes. Fold Changes were normalized to vehicle treated animals. 
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3.4.2 Identification of potential networks via pathway analysis in the hippocampus 

In order to identify novel genes and pathways that might play a role in mediating an early 

antidepressant response in DBA/2J mice, we performed a pathway analysis with the 87 

genes detected by the microarray. We identified a pathway formed out of 15 genes 

(Figure 39) that originated from the microarray result, after applying these genes to the 

Pathway Studio software v7.1 (Ariadne Genomics, Rockville, MD, USA), which contains 

literature-based relations between proteins, small molecules and cellular processes 

(Webhofer et al., 2011).  

 

Figure 39: Pathway analysis of altered genes after 14d of paroxetine treatment. 15 out of 87 genes were clustered in 

a common pathway via the Pathway analysis software. 

 

3.4.3 Validation of potential candidates with qRT-PCR 

After performing the pathway analysis, 14 genes were selected for further investigation. 

The samples derived from the microarray analysis were used for qRT PCR as technical 

control replicates. We investigated mRNA expression levels with normalization to Hprt. 10 

out of the 14 selected candidates could be validated. Bgn was significantly upregulated in 

the good responders after 14d of paroxetine treatment compared to the vehicle treated 
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control group (T22 = -2.141, p < 0.05) (Figure 40A). The same regulation pattern was 

found for Gfap (T11.360 = -2.553, p < 0.05) (Figure 40D), Serpinf1 (T17.725 = -2.730, p < 0.05) 

(Figure 40I), Slc14A1 (T13.506 = -2.289, p < 0.05) (Figure 40J), Vim (T21 = -2.835, p < 0.01) 

(Figure 40M), Wisp1 (T20= -2.789, p < 0.05) (Figure 40N). Good responders showed a 

trend in Cd9 upregulation compared to vehicle treated animals (T22 = -1.997, p = 0.058) 

(Figure 40B). However, we also detected genes that show a significant downregulation in 

the good treatment responders after 14d of paroxetine treatment compared to the vehicle 

treated control group, such as Cxcl12 (T22 = 2.2.39, p < 0.05) (Figure 40C),Il16 (T22 = 

3.319, p < 0.005) (Figure 40E), Ntf3 (T22 = 4.537, p < 0.000) (Figure 40G) and Trpc6 (T22= 

2.995, p <0.01) (Figure 40L). Mylk (Figure 40F), Ptpn21 (Figure 40H) and Stat3 (Figure 

40K) did not show any significant gene expression alterations between the two treatment 

groups.  
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Figure 40: Validation of candidate genes from the microarray. Out of 14 selected candidates, the mRNA of 10 

transcripts were significantly differently regulated in the hippocampus after 14d of paroxetine treatment (A-N). * 

significant different to vehicle treated control animals p < 0.05. 
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3.4.4 Time course of gene expression regulation during antidepressant treatment 

in the mouse hippocampus  

Interestingly, more genes were regulated following subchronic paroxetine treatment 

compared to chronic treatment. When comparing the gene expression profiles of the two 

treatment time points, we identified an overlap of 15 genes differently regulated following 

both treatment intervals (Table 6). The 15 detected genes in the overlap were equivalent 

to 17.2% of the total number of genes found after 14d of treatment and 50% of the genes 

detected after 28d of treatment.  

Table 6: Differently regulated genes after 14d and 28d of paroxetine treatment. When comparing the genes 

differently regulated after 14d and 28d, we detected an overlap of 15 genes, which were regulated after both 

treatment time points. 

 

 

3.4.5 Transcriptome signatures predicting antidepressant response in the 

periphery 

We aimed at the detection of novel genes and pathways in the periphery of DBA/2J mice 

mediating an early antidepressant response not only in the brain but also in the periphery. 

This could potentially provide novel information on individual antidepressant treatment 

outcome after subchronic treatment. Therefore, we conducted a whole-genome 

expression microarray analysis by using peripheral blood. For this purpose gene 

expression data sets of vehicle treated animals (n=12), good responders (n=12) and poor 

responders (n=12) were created and analyzed. In pairwise group comparisons both 

treatment effect and response status of mice were evaluated in respect to antidepressant 

treatment. Technical batch effects in the data set and measured drug concentrations in 
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blood were used as covariates in an ANOVA based statistical model. Although no robust 

gene regulation was apparent when comparing treatment groups (independent of 

response) with the control group. However, there was a pronounced effect within the 

treatment group. Interestingly, we were able to detect a set of 259 transcripts that show a 

significant change in expression due to antidepressant response status at a false 

discovery controlled significance level of 10% (q < 0.1) (Table 7).  
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Table 7: Significantly regulated genes in the peripheral blood between good and poor responders after 14d of 

paroxetine treatment. Genes are ordered according their functional classes. Fold changes are normalized to poor 

responders. 
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Out of those 259 differentially regulated probes, 13 transcripts were chosen for qRT-PCR 

validation (Table 8). The selection of the candidates was based on literature research.  

We were able to validate 2 candidates out of the preselected targets with two different 

housekeepers (Hprt and Rpl18a). Add1 was significantly down regulated in the good 

treatment responders compared to the poor treatment responders (Hprt: T22 = 4.001, p < 

0.005; Rpl18a: T22 = 2.762, p < 0.05) (Figure 41A). The same expression pattern was 
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found for P2rx1. P2rx1 was significantly down regulated in the good treatment responders 

compared to the poor treatment responders (Hprt: T21 = 4.199, p < 0.000; Rpl18a: T20 = 

2.288, p < 0.05) (Figure 41B).  

 

Figure 41: Validation of candidate genes from the microarray. (A) Add1 was significantly down regulated in good 

treatment responders compared to poor treatment responders. (B) P2rx1 was significantly down regulated in good 

treatment responders compared to poor treatment responders. * significant different to good treatment responders 

p < 0.05. 

Table 8 shows the results for all preselected gene for both microarray and qRT-PCR 

results.  

Table 8: Comparison of the microarray and the qRT-PCR data. Genes that were significantly regulated in the 

microarray and the qRT-PCR are printed in bold. Fold changes were normalized to poor responders. 
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3.4.6 Predictive gene expression transcripts of antidepressant treatment response 

tested in a human sample  

To assess the relevance of the gene expression transcripts for antidepressant response in 

humans, we tested their predictive ability to classify response status in a human sample. 

The sample (n=38), consisted of a subset of MDD patients treated with escitalopram for 

12 weeks. These patients were recruited from two samples at Emory University School of 

Medicine (Department of Psychiatry and Behavioral Sciences). The first sample (n= 32) is 

a small subset of the PReDICT study (Dunlop et al., 2012), containing four hundred 

treatment-naive patients with MDD diagnosis. The second sample (n=6), also a subset of 

a previously published study (McGrath et al., 2013) consisted of patients with a primary 

diagnosis of MDD (assessed by the Structured Clinical Interview for DSM-IV-TR Axis I 

Disorders, Research Version, Patient Edition With Psychotic (Screen) (First MB, 2002) 

who were randomly assigned to 12 weeks of either escitalopram or cognitive behavioral 

therapy for 12 weeks. From both samples blood was drawn at baseline and after 12 

weeks. Only patients from the drug groups (n=38) were included in the final analysis. 

From our full drug-treated sample, 27 patients were classified as responders and 11 as 

non-responders according to percent changes in HDRS-17 scores from baseline to week 

twelve (≥ 50% or < 50% change respectively). 

Mouse gene expression transcripts (n=259) were mapped to its human orthologue genes 

present in the Illumina HT-12 arrays (n = 241). Gene expression repeated measures from 

the patients at baseline and week 12 were available, thus we computed the absolute 

difference between the expression levels of the transcripts between those time-points and 

tested whether these alterations were able to predict response to escitalopram treatment. 

Interestingly, we were able to detect differences in expression profiles from baseline to 

week 12 of the human-orthologues that allowed us to predict the response status (percent 

change in HDRS-17 from baseline to week 12) with an accuracy of 84% in the human 

sample. Prediction persisted after we permuted the response-status labels 1000 times (p 

= 0.017).  

3.4.7 ENCODE ChIP-Seq enables us to detect common transcription factors, 

regulated by the gene set predicting antidepressant response in humans 

Using the ENCODE ChIP-Seq Significance Tool 

(http://bioinformatics.oxfordjournals.org/content/early/2013/06/02/bioinformatics.btt316.full.

pdf+html), we checked for transcription factor enrichment among our genes identified in 

http://bioinformatics.oxfordjournals.org/content/early/2013/06/02/bioinformatics.btt316.full.pdf+html
http://bioinformatics.oxfordjournals.org/content/early/2013/06/02/bioinformatics.btt316.full.pdf+html
http://bioinformatics.oxfordjournals.org/content/early/2013/06/02/bioinformatics.btt316.full.pdf+html
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our analysis. Enrichment scores for this tool are calculated using a one-tailed 

hypergeometric test that is corrected for multiple testing using false discovery rate 

(Auerbach et al., 2013). For instance, the CCCTC-binding factor (CTCF) was one of the 

transcription factors enriched in our analysis. Out of the 183 mouse genes recognized in 

the database, 149 genes were regulated by CTCF within a 500 base pair radius of their 

respective transcription start sites ( p = 3.845 * 10 ^ -77). The effect of this transcription 

factor was replicated in the human ortholog sample as 145 of the 236 genes recognized 

by the server were similarly regulated by CTCF (p = 2.44 * 10 ^ -6). Thus, the genes 

identified in our analysis are closely linked by CTCF transcription factor regulation, 

indicating a common mechanism.  
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4 Discussion 

 

Depressive disorder is one of the most common mental diseases worldwide. However, 

when it comes to antidepressant treatment outcome, a significant number of patients do 

not show an adequate response to the treatment, relapse or continue to show remaining 

symptoms (Trivedi et al., 2006). The overarching aim of this thesis was to advance our 

current understanding of the neurobiology underlying individual antidepressant treatment 

response in major depression, and to furthermore identify predictors of treatment 

outcome. A number of studies have already aimed to identify valid biomarkers, which 

would allow the clinicians to predict antidepressant treatment outcome (Schmidt et al., 

2011a; Cattaneo et al., 2013; Le-Niculescu et al., 2008a; Leuchter et al., 2010; Leuchter 

et al., 2009; Binder and Holsboer, 2006; Schwarz and Bahn, 2008). However, the results 

in such studies were rather disappointing. In search of confounding factors impairing the 

identification of response biomarkers in MDD, the following factors, amongst others, have 

been identified as being important. First, the unreliability of the diagnosis is a critical point 

for clinical studies, and is founded on the basis that depression is a complex syndrome, 

and not simply a disease entity (Rush, 2007). Different symptoms of the syndrome, such 

as sleep disturbances, lack of concentration and depressed mood may all have 

biologically distinct causes. Second, individual confounding environmental factors are 

likely to play a critical role in biomarker research. It is now generally accepted that 

susceptibility to major depression is determined by a combined effect of genes and 

environment, with heritability estimates ranging from 30% to 40%, complemented by a 

major impact of stressful or aversive life events (Villanueva, 2013; Malhi et al., 2000; 

Nestler et al., 2002a). Changes in epigenetic modifications during the lifespan as a 

consequence of a plethora of environmental influences, including previous disease 

episodes and treatment schedules, are also likely to hamper the identification of valuable 

predictive biosignatures for treatment response (Klengel et al., 2014; Dell'Osso et al., 

2014; Pena et al., 2014; Nestler, 2014). Third, the heterogeneity of the patient’s age in 

clinical studies is likely to be a critical point for the identification of biomarkers. To 

overcome these limitations, which are characteristics of any human experimental trail, we 

developed a novel experimental approach that mimics the heterogeneity of antidepressant 

treatment outcome in mice, which is already known from the clinical situation. 

Using this novel experimental approach, we provide a large body of evidence that the 

here described animal model is a valid model, depicting the heterogeneity of 
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antidepressant treatment outcome in mice, and is therefore a good approach to 

investigate targets mediating individual antidepressant responses. After extensive 

validation of our experimental approach, we combined our model and findings from the 

clinical situation, in order to identify a subgroup of mice who responded well and poorly 

after a chronic and subchronic pharmacological treatment. Gene expression differences in 

the good responder and poor responder subgroups were extensively analyzed using an 

unbiased microarray approach, aiming to identify novel targets and gene networks 

mediating the antidepressant treatment outcome. After the chronic antidepressant 

treatment, we were not able to detect any significant differences in gene expression 

between good and poor treatment responders. However, after 14d of paroxetine 

treatment, we identified a gene expression signature in the peripheral blood that was able 

to predict the antidepressant response in our mouse model. Furthermore, these findings 

enabled us to predict the response status within a subset of human patients. 

Additionally, we were able to identify and further characterize Sox11 as one of the most 

interesting candidate genes regulated during antidepressant treatment in the mouse brain. 

Specifically, chronic and subchronic antidepressant treatment induces Sox11 mRNA 

expression in the hippocampal DG, and moreover our data suggests that Sox11 is 

involved in modulating anxiety-related behavior. 

4.1 Pharmacological studies 

The commonly prescribed antidepressants are generally effective, although a subset of 

patients do not respond to any prescribed interventions. Paroxetine, a SSRI, is used 

regularly in the clinic to treat depression and its pharmacology is well described in 

humans. Preskorn and colleagues could show that all SSRIs are slowly and fully absorbed 

from the gut with a peak plasma concentration after 3 - 8 hours. They could also 

demonstrate that a minimum effective dosage of 20mg/day paroxetine is eliminated in the 

human with a half-life of 1 day (Preskorn, 1997). The pharmacokinetics and 

pharmacodynamics of paroxetine in the mouse have so far not been described in detail. 

This leaves the question about the correct and most importantly translatable dosage 

largely unanswered. As conclusive data are still not available from the literature, we 

conducted initial pharmacological studies. 
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4.1.1 Paroxetine - struggling for the right dosage 

First, we were interested in identifying the minimum effective dosage for the DBA/2J 

mouse strain, as we wanted to avoid any possibility of animal overdosing. Thus, we 

performed two independent studies where we tested two different concentrations of 

paroxetine in various parameters.  

In the beginning, we treated the animals chronically with a very low dose of paroxetine 

(1mg/kg BW twice a day) and detected a significant increase in body weight gain in the 

paroxetine treated animals compared to the vehicle treated control group. The same could 

be shown for the higher paroxetine concentration (5mg/kg BE twice a day) following 

chronic administration. These findings are in line with data from clinical studies, where an 

increase in body weight gain during antidepressant treatment is a common unwanted side 

effect (Flint and Kendler, 2014). Antidepressants not only influence body weight, but also 

have been consistently described to attenuate the HPA system (Holsboer, 2003; Holsboer 

and Barden, 1996). More than 30 years ago, Gibbons and colleague could demonstrate 

that plasma cortisol levels are elevated in depressed patients and are furthermore 

normalized after clinical remission (Holsboer and Barden, 1996; Gibbons, 1964). Other 

studies have demonstrated that untreated depressed patients show exaggerated cortisol 

release after Dex stimulation compared to healthy controls in a combined dexamethasone 

(Dex)/CRH-test, a common test to investigate changes in stress system function. 

Interestingly, after 1 week of amitriptyline treatment these abnormalities began to 

disappear and normalization of the HPA axis becomes even more pronounced after a 

longer antidepressant treatment period (Heuser et al., 1996). Furthermore, Ising and 

colleagues have demonstrated that patients presenting a significant reduction in stress 

hormone levels already after 2 weeks of antidepressant treatment, show a more 

pronounced reduction in the Hamilton Rating Scale for Depression (HDRS) after 5-6 

weeks of treatment. Therefore, they found that an improvement in the Dex/CRH test after 

2 weeks of antidepressant treatment was significantly associated with treatment response 

5 weeks after a pharmacological intervention (Ising et al., 2007). Besides these clinical 

studies, there is also evidence from preclinical studies, in which a correlation between the 

dysregulation of the HPA system and the psychopathology of depression has been shown 

(reviewed in (Holsboer and Barden, 1996)). Reul and his coworkers also observed that 

chronic antidepressant treatment is able to reduce basal as well as stress-induced 

corticosterone (equivalent to cortisol in the human system) levels (Reul et al., 1993). 

Considering these findings all point to a central link between antidepressant treatment and 
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HPA axis regulation, we also examined corticosterone levels after chronic antidepressant 

treatment. When the low paroxetine dose was administered, we were not able to find a 

significant difference between paroxetine and vehicle treated animals. This low paroxetine 

dosage seems to influence physiological parameters, namely body weight gain, but is not 

able to evoke an attenuation of the HPA system in the DBA/2J mouse strain. However, 

the higher paroxetine concentration was able to attenuate the HPA axis reactivity, 

resulting in lower corticosterone levels in the paroxetine treated animals, which is in 

agreement with previous findings. Here, our novel animal model reproduced the same 

phenotype as numerous clinical studies including a reduction of stress hormone levels 

after antidepressant administration (Heuser et al., 1996; Ising et al., 2007; Shimoda et al., 

1988).  

Besides the physiological and neuroendocrine changes, antidepressant treatment should 

also provoke a robust behavioral phenotype, which has already been highlighted in 

various preclinical studies (Sillaber et al., 2008; Webhofer et al., 2011; Nestler and 

Hyman, 2010; Nestler et al., 2002b). At a concentration of 1mg/kg BW, paroxetine-treated 

animals tended to spend less time floating in the FST compared to vehicle-treated mice, 

but neither the time spent swimming or the time spent struggling was significantly different 

between the groups. These behavioral data indicate that at 1mg/kg BW, the concentration 

of paroxetine was too low to provoke robust behavioral and neuroendocrine phenotypes. 

By contrast, chronic paroxetine treatment administered at the higher dose was able to 

effectively provoke robust behavioral responses in the FST. Paroxetine-treated animals 

spent less time floating and more time engaged in active behaviors, namely swimming 

and struggling. These behavioral findings are in line with various other studies, which 

have demonstrated that antidepressant treatment leads to an increase in active behavior 

and a decrease in passive behavior in the FST (Sillaber et al., 2008; Webhofer et al., 

2011).  

In order to gain insight into the pharmacology of the two different antidepressant doses 

administered to the mice, paroxetine levels were measured in the brain and the plasma of 

the paroxetine-treated animals. At a concentration of 1mg/kg BW paroxetine, no 

significant difference was found in paroxetine plasma or paroxetine brain concentrations 

between the different responder groups, thereby ruling out that the individual differences 

in treatment efficacy was a consequence of different drug concentrations. Additionally, we 

could demonstrate that paroxetine brain and plasma concentrations are highly correlated. 

Nevertheless, it is important to acknowledge that the measured plasma paroxetine 
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concentrations, with an average of 50ng/ml, are relatively low compared to the human 

situation, showing average values of 180ng/ml (Heuser et al., 1996). Similarly, at the 

higher dose of paroxetine no significant difference was detected in paroxetine plasma and 

brain concentrations between the different responder groups. Plasma and brain 

paroxetine concentrations were significantly higher compared to the previously used 

1mg/kg BW dose. We could show again a correlation of paroxetine brain and plasma 

concentrations. 

In summary, we conclude that a concentration of 1mg/kg BW paroxetine is insufficient to 

evoke robust behavioral and neuroendocrine treatment effects in our experimental model. 

By contrast, chronic administration at 5mg/kg BW is sufficient to evoke robust behavioral 

and neuroendocrine treatment effects in our experimental model and was therefore 

selected for all further experimental investigations. 

Does a subchronic paroxetine treatment evoke the same physiological profile as a 

chronic treatment? 

Treatment duration is another important issue in any experimental design. We therefore 

addressed the question as to whether a subchronic (14d) treatment is sufficient to elicit 

the same behavioral and physiological phenotype compared to that resulting from chronic 

treatment. After 14d of paroxetine treatment we detected an increase in body weight gain, 

which is in line with our physiological data following chronic paroxetine treatment. 

However, it was not accompanied by a reduction in corticosterone levels. One can 

speculate that a treatment duration of 14d is too short to significantly modulate HPA axis 

activity, as has been shown by Reul and co-workers to occur following chronic treatment 

(Reul et al., 1993).  

Antidepressants are known to alter the behavior of an animal in the FST. After subchronic 

paroxetine treatment we detected the same behavioral phenotype that manifested 

following chronic paroxetine treatment. Treated animals showed a reduction in the time 

spent floating and an increased time engaged in active behaviors. These behavioral data 

indicate that subchronic antidepressant treatment is sufficient to evoke robust behavioral 

phenotypes.  

We next checked whether treatment response (good versus poor responders) correlates 

with plasma/brain paroxetine concentrations. Interestingly, plasma paroxetine 
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concentrations were significantly elevated in good responders compared to the 

intermediate responder group and the poor responder group. The same pattern was found 

for brain paroxetine concentrations. This significant difference in brain and plasma 

paroxetine concentrations could be a reasonable explanation, as to why some animals 

show a rapid and strong antidepressant response in the FST while others do not. 

However, in the subsequent microarray analyses on these animals, plasma paroxetine 

concentrations were considered as co-variate, and were excluded to play a significant role 

here (see chapter 3.4.4 - 3.4.7). There is evidence from clinical studies that 

polymorphisms in specific blood brain barrier transporters, such as ABCB1, are involved 

in a better and faster antidepressant response (Uhr et al., 2008). As we used an inbred 

mouse strain in our experiment, genetic polymorphisms are not likely to play a prominent 

role here. However, differences in gene expression regulation of specific blood brain 

barrier transporters, resulting from antidepressant treatment, may provide an explanation 

for the significant difference in brain paroxetine concentrations. Therefore, gene 

expression analysis for drug transporters at the blood-brain-barrier could be performed in 

future studies, in order to investigate their potential involvement in shaping the behavioral 

response. Nevertheless, further studies are need in order to elucidate the molecular 

mechanisms underlying the early response phenotype in these animals. 

4.1.2 Elimination kinetics of paroxetine - can we really translate from men to 

mouse? 

After we had identified the minimum effective dosage for the DBA/2J mouse strain, we 

aimed to gain a better understanding into the pharmacokinetics of paroxetine, especially 

with regards to the pharmacological half-life within the mouse organism. Therefore, male 

DBA/2J mice were treated chronically with 5mg/kg BW paroxetine twice daily and were 

subsequently killed at different time intervals after discontinuation of the paroxetine 

treatment. In a clinical study it has been shown, that a single dose of paroxetine 

administration (20mg) is eliminated with a half-life time of 10h in adult men. In the same 

study, multiple administrations of paroxetine (20mg/day) resulted in decreased elimination 

rates and a longer half-life time of 24h (Kaye et al., 1989). Here, we were able to show 

that the elimination rate following chronic paroxetine treatment in a mouse was similar to 

the elimination rate of multiple administrations of paroxetine in humans. One day after 

discontinuation of the antidepressant, the animals showed a 50% reduction in the 

paroxetine levels, which is in line with the human situation. Additionally, we could prove 

here that paroxetine plasma levels are no longer detectable 3 days after discontinuing 
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antidepressant treatment. As there is only limited access to the brain in human studies, 

we also investigated the paroxetine half-life in the mouse brain. We have shown that 

paroxetine brain and plasma concentrations are highly correlated, which has important 

clinical implications given the inability to assess human brain concentrations. We clearly 

demonstrated that paroxetine levels, which are measured in the blood, reflect the situation 

in the brain. Furthermore, we showed that paroxetine is detectable slightly longer in the 

brain, although there is nevertheless very little left 3 days after discontinuing paroxetine 

treatment. 

Taken together, we have shown that paroxetine plasma and brain levels are highly 

correlated. Furthermore, we demonstrated that the elimination rate of paroxetine in the 

mouse is the same as what is observed in the human situation. These findings could 

serve as a basis to predict brain concentrations within clinical studies and enable us to 

really translate our pharmacological studies from the mouse to the human system. 

4.1.3 Mouse pellets - one step closer to translational research 

Gavaging, i.p. injection as well as oral administration via the drinking water are all 

common tools for drug application in preclinical sciences (Wagner et al., 2012; Santarelli 

et al., 2003; Ganea et al., 2012; Hodes et al., 2010; Qi et al., 2008). However, such routes 

of administrations are accompanied by certain limitations. For example, gavaging and i.p. 

injection are very time consuming techniques, especially when performed on a large 

number of animals. In addition, they are a very stressful for the animals and the animals 

need to be handled on a daily basis. Most of the time body weight loss accompanies 

these procedures (Atcha et al., 2010; Zhang, 2011; de Meijer et al., 2010), which is a 

reflection of the animal's discomfort, and can thus be interpreted as an additional stressful 

stimulus. Drug administration via drinking water also has its limitations. For examples, the 

researcher does not retain control of the exact amount of drug consumed by the 

experimental animal. Although the bottles are weighed on a regular basis, leakage cannot 

be completely prevented and thus calculation of the exact dose is not always accurate. 

Secondly, the concept of peak-trough, dosing as achieved by the administration of mouse 

pellets, cannot be achieved from continuous administration of the compound via the 

drinking water, as chosen in other rodent studies. However, the route of administration is 

an important consideration when designing a valid animal model that mimics the human 

situation. For example, there is good evidence to believe that pharmacokinetics play an 

important role when it comes to the regulation of gene expression (Schug et al., 2013). 
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This study is, to our knowledge, the first to use customized mouse pellets for drug 

administration. These pellets bring us one step closer to translational research, as nearly 

all patients receive their antidepressants via tablets. Besides the fact that this approach 

will bring us closer to clinical research, the mouse pellets have additional advantages. The 

use of pellets represents a non-invasive drug delivery system, as the pellets are simply 

dropped in the animal's home cage and the animals are totally free to consume these 

pellets. Moreover, the pellets are a highly palatable food for the animals, and they 

consume it within the first minutes, and therefore this type of administration represents a 

stress-free route of delivery. To ensure that administration of mouse pellets is comparable 

to the commonly used i.p. injection, 10 male mice were injected with one acute 5mg/kg 

BW dosage of paroxetine. Animals administered paroxetine via i.p. injections presented 

significantly higher plasma paroxetine levels and higher brain paroxetine levels compared 

to the animals treated with the mouse pellet. In addition, paroxetine brain and plasma 

levels after i.p. injection were also highly correlated. Clinical studies have shown that after 

chronic paroxetine administration the maximum plasma concentration is around 105µg/ml 

(Heydorn, 1999). Therefore, we conclude that although we detected a significant 

difference between the two application forms, the paroxetine plasma levels of the mouse 

pellets are still in a similar pharmacological range compared with the human situation. 

4.2 Novel experimental approach - modeling individual antidepressant 
response in mice 

The identification of novel biomarkers in depression has been relatively unsuccessful in 

clinical studies, so far (Schmidt et al., 2011a; Sim and Ingelman-Sundberg, 2011). The 

reasons for this are not yet clear. Human genetic studies are searching for chromosomal 

regions or candidate genes that play a role in mood regulation and/or other 

neuropsychiatric disorders. To-date, the clinical data is rather disappointing since the 

human data sets are very heterogeneous as they are influence by many co-factors, 

including different drugs, ages, disease history, and a variety of environmental influences 

that very likely impact gene expression (epigenetic factors) ((Le-Niculescu et al., 2008a) 

and reviewed in (Philibert et al., 2014)). In contrast, animal models are mainly performed 

with homogeneous inbred mouse strains in controlled environments. This overcomes 

some limitations associated the human studies. However, animal studies are often lacking 

in terms of relevance to the human condition (Le-Niculescu et al., 2008b). Depression is a 

very complex psychiatric disorder (Kessler et al., 2005; Nestler et al., 2002a), and it's 

diagnosis is already challenging enough in humans. Translating this complex human 
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disorder into an animal model approach is even more challenging. The ideal animal model 

should fulfill certain criteria: it should mimic the human conditions with regard to 

symptomatology, pharmacological treatment and the biological basis (McKinney et al., 

1969). However, meeting all these criteria is very difficult, especially in depression where 

some key features (worthlessness, guilt and suicidal intention) are defined by a subjective 

verbal report, which can never be modeled in animals (Sillaber et al., 2009). Furthermore, 

the most commonly used animal models are non-primate, often rodents, and are based on 

exposing a healthy animal to a stressful environment. These models then only account for 

experienced-related behavioral changes in depression (Kalueff et al., 2007). Some 

aspects, such as the influence of genetic variations are completely ignored in these 

models and thus the development of the ideal homologous model seems out of reach 

(Sillaber et al., 2009). As depression is a very complex disease, only certain key 

symptoms, such as anhedonia, dysregulation of the HPA axis and altered brain 

morphology, can be mimicked (Sillaber et al., 2009). DBA/2J represent an inbred mouse 

strain with an high innate anxiety and a high responsiveness to antidepressant treatment 

under basal condition (Ohl et al., 2003; Yilmazer-Hanke et al., 2003), and was thus 

selected as the ideal mouse strain for our experimental approach. By using this mouse 

strain, we avoided the use of additional stressors, which would have been needed in other 

mouse strains to evoke an antidepressant treatment response. In this experimental 

design, we just focused on individual antidepressant treatment response in mice. 

Moreover, this novel attempt should not be seen as a novel model for depression-like 

symptoms but rather as a means for modeling the heterogeneity of antidepressant 

treatment outcome, an issue of supreme importance in psychiatric care. By using an 

inbred mouse strain housed under the same conditions, we tried to control for all the 

above mentioned factors, which may potentially disguise biomarkers in the clinical 

situation. Our hypothesis is that this completely controlled animal model may enable us to 

detect 'super-clean' biomarkers, which we could then translate to the clinic. Preclinical as 

well as clinical studies are thus highly relevant for this field, and more importantly, must be 

combined to detect potential strong candidates that would otherwise be missed in the 

independent models (Le-Niculescu et al., 2008a). These novel targets can be then 

extensively investigated in the animal model and thus may shed light on the field of 

biomarkers in antidepressant treatment outcome (Figure 42). 
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Figure 42: Need for novel experimental approaches: strategies for improving translational research in the field of 

depression. To detect novel candidate genes and biomarkers that are also relevant for the clinical situation, 

improved animal experimental approaches need to be established. To enable a translational approach, questions 

that are arising in the daily clinical situation need to be precisely formulated and then translated in an animal 

approach. With this animal approach we are able to detect novel targets, especially in the brain, which are 

mediating the individual antidepressant response. Furthermore, we need to integrate the mouse data at a very early 

stage with the human data, which would then enable us to detect really strong an promising candidates. These 

strong candidates can then be extensively investigated in the animal model and thus may lead to the development 

of potential novel compounds. 

4.2.1 Heterogeneity in antidepressant treatment outcome can be modeled in mice 

While many patients respond well to the currently available antidepressants, a significant 

number of patients do not show an adequate response to the treatment, show remaining 

symptoms or the patients relapse (Trivedi et al., 2006; Carter et al., 2012). Clinical 

studies, such as the STAR*D study have demonstrated that patients can be divided into 

remitters or 'good responders' and non-remitters or 'poor responders' to a prescribed 

therapy. Furthermore, it could be shown in clinical studies that most of the time, treatment 

strategies are based on a trial and error principle (Fabbri et al., 2013) and the longer the 

patients are treated the less chance they have to remit (Trivedi et al., 2006). These 

findings from clinical studies highlight the extensive variety in antidepressant treatment 

outcome. To-date, in preclinical research there is no available animal model able to 
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distinguish between good and poor treatment responders according to a behavioral 

readout. Our novel experimental design enables us to detect good and poor treatment 

responders, according to their performance in the FST. More importantly we are to 

establish a connection between clinical and preclinical findings.  

The investigation of extreme groups has already been successfully performed in the field 

of stress research. Specifically, it has already been shown that not all animals respond in 

the same way to a stressful stimulus. Schmidt and colleagues subjected a large number of 

animals to a chronic social stress paradigm to demonstrate that some animals recover 

quickly from the stress procedure, whereas others do not. According to basal 

corticosterone levels measured 5 weeks after the stress procedure, stressed animals 

were classified either as 'vulnerable' or 'resilient'. With this experimental design, they 

could demonstrate that individual stress susceptibility can be detected when using a large 

animal cohort (Schmidt et al., 2010). However, with respect to antidepressant treatment 

response, nobody has yet followed such an experimental design. Our novel experimental 

approach is a promising, new attempt in order to shed light on treatment response and 

thus represents an innovative approach to investigate novel targets mediating individual 

responsiveness to antidepressant treatment. 

4.2.2 Is the FST a suitable readout parameter for antidepressant response? 

The FST is one of the most commonly used behavioral tests to screen antidepressant 

activity in rodents (Cryan et al., 2002). Thus, we postulated that the FST, is a valid tool to 

detect individual antidepressant treatment responses within a large group of animals. 

Porsolt introduced the FST in rats in the late 1970s to assess antidepressant activity in 

preclinical animal models (Porsolt et al., 1977a). Since that time the FST is widely used to 

investigate antidepressant activity for novel and already known compounds, in order to 

detect depressive-like behavior and stress coping strategies in rodents (Cryan et al., 

2002; Lucki, 1997). The test is based on establishing an inescapable situation for the 

rodent. The initial escapable-orientated motivation develops into an immobile posture 

(Cryan et al., 2002). This immobile posture is considered on the one hand, as a failure to 

pursue escape-directed behavior, and on the other hand, is seen as passive behavior that 

disengages the animal from active forms of coping with stressful stimuli (Lucki, 1997). In 

general, antidepressants increase escape-directed behavior and prolong the onset of 

immobility behavior (Cryan et al., 2002). However, the FST is debated controversially in 

the literature. Some studies criticize that acute antidepressant treatment evokes 
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behavioral effects in the FST, although acute antidepressant treatment has no effect in 

clinical studies (Cryan et al., 2002). The FST should be seen more as a reliable behavioral 

tool, which is not necessarily a model for depression but rather for antidepressant 

treatment outcome (Petit-Demouliere et al., 2005). Considering the identification of 

individual antidepressant treatment outcomes was one of the main aims of this thesis, the 

FST was the most suitable tool. Furthermore, to ensure that the behavioral readout 

describes real antidepressant response, we performed two FSTs, one before and one 

after the antidepressant treatment. This repeated testing enabled us to investigate 

whether differences in the treatment response of animals could be due to preexisting, 

inherent characteristics or due to a real pharmacological treatment effect. With this test, 

we were able to show that the preexisting inherent characteristics do not correlate with 

those arising after antidepressant treatment.  

4.3 Genes and gene networks mediating an early onset of antidepressant 
response 

According to findings from clinical studies, there is a subset of patients that respond to an 

antidepressant treatment at an early stage, i.e. after 2 weeks of treatment (Taylor et al., 

2006; Nierenberg et al., 2000; Entsuah et al., 1998). Although all animals were treated 

and handled in the same way, we were also able to detect a large behavioral variation 

within the animals as indicated in the FST. After identifying good and poor responders, we 

investigated differences in their gene expression profile. Analysis of the brain microarray 

experiment revealed 87 differentially regulated genes between good responders and 

vehicle-treated animals, while there were no significant differences between good and 

poor treatment responders. 

4.3.1 Subchronic paroxetine treatment enables the identification of an expression 

profile signature predicting antidepressant response in patients 

In clinical studies, blood expression profiling has become a more frequently used 

technique to investigate genetic alterations following various treatment and/or 

environmental contexts in clinical studies. Therefore, we investigated the influence of 

subchronic paroxetine administration on gene expression alterations in peripheral blood in 

order to increase the translational value of our approach.  

After statistical correction, we found a robust gene regulation effect of 259 transcripts 

when comparing RNA extracted from blood of good and poor treatment responders. 
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Interestingly, there was no overlap of significantly regulated genes in the periphery and 

the brain. This suggests that gene expression changes measured in the patients' blood 

are largely independent of gene expression alterations in the brain. To-date, there are few 

studies comparing the gene expression profile of the peripheral blood with that of the 

CNS. Sullivan and colleagues have shown in clinical studies, that whole blood share 

significant gene expression similarities with various human brain tissue, at least at the 

level of the transcriptome. Furthermore, when investigating candidate genes relevant to 

schizophrenia, they were able to show that approximately half of the genes were 

expressed in both whole blood as well as prefrontal cortex tissue (Sullivan et al., 2006). 

However, this study has its limitations: firstly, the human data set shows a high level of 

genetic heterogeneity, which makes it even harder to detect common genes. Secondly, 

there is always a general methodological problem when it comes to post-mortem tissue 

(Sullivan et al., 2006; Witt et al., 2013). Witt and colleague also compared the gene 

expression profiles of blood, hippocampus and prefrontal cortex in genetically identical 

rats under baseline conditions. Here, they could show that, nearly all genes expressed in 

the blood tissue are also expressed in at least one brain tissue. However, the authors 

clearly state that it would be desirable to investigate the co-expression of genes in blood 

and brain tissue after a certain form of challenge or treatment (Witt et al., 2013). The 

current findings reported here, are not in line with the afore mentioned studies. We were 

unable to detect any overlap between genes regulated in blood and hippocampal tissue in 

subchronically-treated male DBA/2J mice challenged to a FST. Given the importance of 

the comparability of gene expression profiles in blood and brain tissue in neuropsychiatric 

research (Witt et al., 2013), the need for more studies is inevitable.  

In order to assess the relevance of the mouse gene expression transcripts for 

antidepressant response differences in humans, we tested their predictive ability to 

classify response status in a human sample. Repeated gene expression measures from 

the patients at baseline at 2 and 12 weeks after the treatment onset was available. 

Therefore we were interested as to whether differences in gene expression are able to 

predict antidepressant response. Interestingly, we detected differences in expression 

profiles from baseline to week 12 of the human-orthologues that allowed us to predict the 

response status (percent change in HDRS-17 from baseline to week 12) with an accuracy 

of 84% in the human sample. To our knowledge, this is the first study that has been able 

to show such a prediction rate in a translational approach. These findings bring us a step 

closer to predict antidepressant treatment response at an early stage during 

antidepressant treatment. In order to better understand, how the detected genes are 
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connected to each other, we performed further analyses to detect common transcription 

factors. Using the ENCODE ChIP-Seq Significance Tool, we identified the CTCF one of 

the candidates that was enriched in our data set. The effect of this transcription factor was 

replicated in the human ortholog sample. Specifically, 145 of the 236 genes were similarly 

regulated by CTCF in the human data set. Thus, the genes identified in our analysis are 

closely linked by CTCF transcription factor regulation, indicating a common mechanism 

(Figure 43). While CTCF hosts many cellular roles, one study implicated its role in the 

regulation of serotonin receptors, thereby linking this transcription factor to a 

predisposition to affective disorders (Phillips and Corces, 2009). The strong enrichment of 

our gene set for this transcription factor supports the role for possible activity of this factor 

in treatment response for major depression. According to the literature, CTCF seems to 

be a very promising candidate, playing an important regulatory role for numerous genes. 

However one has to keep in mind that approximately 14000 - 40000 binding sites for 

CTCF have already been identified genome-wide (Phillips and Corces, 2009). By 

identifying this common transcription factor, further studies should be performed in order 

to investigate how this transcription factor is mediating antidepressant responsiveness in 

our mouse model and more importantly, investigate how relevant CTFC is as a key 

modulator to the gene set detected in our translational approach. 
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Figure 43: Translational approach enables us to detect common transcription factors. By using this translational 

approach we were able to detect a gene set, which is regulated in the mouse peripheral blood after 14d of 

paroxetine treatment. After the integration of the mouse data in the human dataset, we were able to detect 

differences in gene expression profiles in the human samples from baseline to week 12 that allow us to predict the 

response status with an accuracy of 84% in the human samples. Further investigations also identified CTCF, a 

transcription factor, as being enriched in both the human and mouse data set.  
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4.3.2 Subchronic paroxetine treatment regulates a distinct gene network in the 

brain 

In order to gain a better understanding of the biological connections amongst the various 

detected genes in the brain, a pathway analysis was performed, based on information 

derived from literature-based interactions between proteins, small molecules and cellular 

processes (Webhofer et al., 2011). Interestingly, we were able to detect a gene network 

comprising 15 of the 87 differentially regulated genes. At present, there is little known 

about this gene network in the literature. Interestingly, immune-related genes such as 

Cxcl12 or Il-16, and structural genes such as Gfap and Vim, are highly represented in the 

detected network. There is growing evidence that an altered immune response is an 

important aspect of mood disorders (Friedrich, 2014). Cytokines as well as chemokines 

are hormonal mediators of the immune response and play a crucial role in the 

neuroendocrine system. Cytokines are small signaling molecules, which are secreted by 

various cell types, including astrocytes, microglia, lymphocytes (Arisi, 2014). It has been 

demonstrated that an elevation of circulating proinflammatory cytokines, namely IL-6 and 

tumor necrosis factor alpha, is a characteristic feature in a subset of depressed patients 

(Villanueva, 2013; Dunn, 2006). Proinflammatory cytokines do not only contribute to the 

innate immune response and inflammation, but they also have relevant neuroendocrine 

and metabolic effects, specifically affecting neurotransmitter metabolism and neural 

plasticity (Villanueva, 2013). We could show that subchronic antidepressant treatment 

regulates the proinflammatory cytokines. More specifically, we found that subchronic 

paroxetine exposure significantly downregulated Il-16 mRNA levels. This finding is in line 

with previous findings, showing that administration of cytokine Il-6 induces depressive-like 

behavior in rodents and fluoxetine treatment is able to neutralize this effect (Sukoff Rizzo 

et al., 2012). Besides Il-16, we also detected the chemokine Cxcl12. Chemokines are 

small secreted proteins with chemoattractant properties, meaning that they can attract and 

activate immune and non-immune cells (Réaux-Le Goazigo et al., 2013) and are thus 

acting as neuromodulators (Adler et al., 2005). Currently, the well-established roles of 

Cxcl12 all converge on immune functions, however, more and more reports also identify 

Cxcl12 as an important player in the CNS (Réaux-Le Goazigo et al., 2013). A potential 

role of Cxcl12 in mood disorders is strengthened by the fact that Cxcl12 is also involved in 

neuroprotection, neurogenesis, regeneration and axon guidance. Interestingly, Cxcl12 

seems to interact with Stat3, a gene also detected in the gene network. It has been 

demonstrated that higher expression of Cxcl12 leads to higher Stat3 phosphorylation 

(Shen et al., 2013). Shen and colleagues were able to show that pharmacological 



DISCUSSION   

 

105 

blockade of Stat3 activity inhibited Cxcl12-triggered Stat3 phosphorylation (Shen et al., 

2013). Furthermore, studies could show that Stat3 is activated in various cell types by a 

number of cytokines, such as IL-6 and TGFα (Takeda et al., 1997). These cytokines are in 

turn implicated in triggering reactive astrogliosis (Balasingam et al., 1994; Klein et al., 

1997; Levison et al., 2000; Rabchevsky et al., 1998). Herrmann and coworkers have 

shown that Stat3 is a critical factor for certain aspects of reactive astrogliosis (Herrmann 

et al., 2008) and thus is also a very interesting candidate for future investigation. 

Besides immune-related genes, structural proteins namely glial fibrillary acidic protein 

(Gfap) and vimentine (Vim) were also regulated after subchronic antidepressant 

treatment. There is growing evidence in the field of depression that structural molecules 

play an important role in the pathology of depression as well as in antidepressant 

treatment response. In 2008, Sillaber and colleagues had already shown a significant 

upregulation of Gfap and Vim following chronic paroxetine treatment in male DBA mice, 

which is in line with our findings (Sillaber et al., 2008). Human post mortem studies have 

furthermore shown that GFAP proteins are significantly reduced in depressed patients, 

which strengthens the involvement of glial (dys)-function in mood disorders (Fatemi et al., 

2004). Gfap is nearly exclusively expressed in astroytes and is involved in gliosis, 

neurodegeneration, neuroregeneration and neurogenesis (Fatemi et al., 2004; Sillaber et 

al., 2008). Astrocytes are structural and trophic supporters of neurons and play a key role 

in the CNS immune response, as well as a role in the clearance of ions and 

neurotransmitters (Allen and Barres, 2005; Araque, 2006). Some studies have 

demonstrated that astrocytes play a role in neural progenitor cells during development as 

well as in the mature CNS and promote neurogenesis (Goldman, 2003; Song et al., 2002). 

Additionally, it could be shown that 28d of antidepressant treatment is able to prevent 

stress-induced decreases in astrocyte number. This finding supports the hypothesis that 

dysregulation of glial cells may be involved in the pathophysiology of mood disorders 

(Sillaber et al., 2008; Czéh et al., 2005; Manev et al., 2003). 

In summary, although selected connections between antidepressant-regulated genes 

have been identified, the complete picture of this antidepressant-induced gene network is 

still not clear. To advance the current understanding in regards to the individual role of 

different genes in antidepressant response, further investigations are required. 
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4.4 Gene expression profiling in the hippocampus following chronic 
antidepressant treatment 

In a second study, we were interested in examining the differences between good and 

poor responder after chronic paroxetine treatment, as most depressed patients start 

responding to pharmacological treatment after at least 4 weeks of antidepressant 

administration (Wisniewski et al., 2009; Trivedi et al., 2006; Rojo et al., 2005; Nemeroff 

and Owens, 2002). Here, we aimed to identify novel genes differently regulated between 

good and poor responders. After the identification of the various responder subgroups, an 

unbiased microarray approach was conducted with the tissue derived from the chronically 

treated animals. After statistical analysis of the Illumina microarray chip, 30 genes were 

found to be differently regulated between vehicle treated animals and good responders. 

Although we did not detect a significant difference between good and poor treatment 

responders, a clear treatment effect was evident. Out of the 30 differently regulated 

genes, 12 genes were selected for further validation. With a validation rate of 75% we 

were able to validate a significant number of the selected candidates confirming the 

validity of our results. In the following section, select candidates are discussed in more 

detail: 

ActivinA receptor type 1c, also known as Acvr1c or Alk-7, represents one of the genes 

that was significantly upregulated in the hippocampus of good responders. Activins belong 

to the transforming growth factor-β (TGFβ) superfamily which are now well-known as 

multifunctional regulatory proteins (Werner and Alzheimer, 2006). Besides their role in 

development and hormonal regulation, previous studies have also demonstrated that 

Activins play an important functional role in tissue repair and have been identified as an 

important target in various inflammatory diseases, including brain-related inflammatory 

diseases (Werner and Alzheimer, 2006). Acvr1c, as a member of the Activins, is a growth 

factor-associated gene involved in the survival and differentiation of adult neuronal cells 

(Miller et al., 2007). Furthermore, it is part of the Activin/Inhibin signaling cascade, which 

was previously found to be involved in antidepressant-like properties (Ganea et al., 2012). 

In the study conducted by Ganea and colleagues, Activinβ A exerted acute 

antidepressant-like effects when directly administered to the hippocampal dentate gyrus. 

Collectively, these findings support a potential role of Acvr1c in antidepressant treatment 

outcome and thus make it as a suitable candidate for further studies.  

In addition to its effects of Acvr1c receptor activity, we found that chronic antidepressant 

treatment also affects other genes involved in the inflammatory system, which already 
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came up as a key system following subchronic treatment. One of these genes was the 

complement component 1, q subcomponent-like 2 (C1ql2). C1ql2 is a protein-coding gene 

and is part of the complement pathway, which is involved in the immune response system. 

C1q is a target recognition protein of the classical complement pathway. It's crucial role 

involves the clearance of pathogens and apoptotic cells (Kishore et al., 2004). C1q is also 

involved in a number of immunological processes such as phagocytosis of bacteria, 

neutralization of retroviruses, cell adhesion as well as modulation of dendritic cells 

(Kishore et al., 2004). Complement proteins are localized in the developing central 

nervous system synapses. They are present during a period of active synapse elimination 

and are crucial for normal brain wiring. It has been shown that their role in the brain is 

similar to their function in the immune system: the clearance of cellular material. C1q can 

be divided into two subfamilies: C1q-like proteins and cerebellin-like proteins. While it is 

known that cerebellin-like proteins are essential trans-neuronal regulators of synaptic 

integrity in the cerebellum (Iijima et al., 2010), not much is known about the role and 

function of C1q-like proteins and C1ql2 in particular. During adulthood, C1ql2 is only 

expressed in the dentate gyrus formation of the hippocampus (Iijima et al., 2010). 

Furthermore, there is evidence that C1ql2 is mainly expressed in neurons and to a lesser 

extent in glia cells during adulthood (Iijima et al., 2010). At present, there are no reports 

for an involvement of C1ql2 in depression. However, the link between depression and 

inflammation is highly recognized in the field of depression (Dantzer et al., 2008). 

Furthermore, the hippocampus is a main target region in depression research and thus 

the unique expression pattern of C1ql2 during adulthood strengthens its potential as a 

candidate gene in mental disorders. 

Serpinf1 marks another gene that was detected in the microarray analysis. Serpinf1 

belongs to the serpine family of peptidase inhibitors and is also known by the name 

pigment epithelium-derived factor (PEDF). During development, Serpinf1 is essential for 

the development of the neural retina (Steele et al., 1993). Bilak and colleagues could 

show that Serpinf1 is a neurotrophic factor, which is broadly distributed in the central 

nervous system. It has been suggested, that this factor could have pleiotrophic, 

neurotrophic and neuroprotective effects on non-retinal neurons (Bilak et al., 1999). 

Serpinf1 is a 50kDa, secreted glycoprotein, expressed in a variety of tissue types. For 

instance, adipocytes also secrete Serpinf1 and it thus showed promise as a candidate 

gene in obesity-induced insulin resistance (Böhm et al., 2012; Crowe et al., 2009). 

Furthermore, it was shown that Serpinf1 promotes neuronal survival, differentiation and 

potent inhibition of angiogenesis (Tombran-Tink et al., 1991; Tombran-Tink and 
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Barnstable, 2003). In 2008, Miller and colleagues were one of the first to show a potential 

link between Serpinf1 and antidepressant treatment. They could demonstrate that 

Serpinf1 is upregulated after chronic fluoxetine treatment, which is in line with our current 

finding. The fact that Serpinf1 is responsive to antidepressant treatment and is 

furthermore known to promote proliferation of neuronal progenitor cells, makes it to a very 

promising candidate in antidepressant treatment outcome (Miller et al., 2007). 

Taken together, after chronic paroxetine treatment, we were not able to find significant 

differences, at least on mRNA level, between good and poor treatment responders. Our 

main gene expression differences were detectable between vehicle treated animals and 

good responders. However, to our knowledge, we were the first to examine individual 

antidepressant response after chronic treatment in DBA/2J mice. Thus our study provides 

novel, interesting and promising targets for further antidepressant studies.  

4.5 Time course of gene expression regulation during antidepressant 
treatment in the mouse hippocampus  

Interestingly, more genes were regulated by subchronic paroxetine treatment compared to 

chronic treatment, indicating that at the beginning of the treatment period a large cluster of 

genes are regulated. Our data suggest that following a 4-weeks treatment period, certain 

genes return to baseline expression levels, whereas others remain responsive to the 

ongoing treatment either through direct effects of antidepressant activity or rather 

indirectly as a result of activation of previous cascades. As the number of regulated genes 

significantly varies between the two different time points, the question arises as to whether 

there is an overlap between subchronic and chronic treatment. When comparing the gene 

expression profile of the two treatment time points, we can identify an overlap of 15 genes 

(Table 6) representing genes that were differently regulated following both treatment 

intervals. 

Genes integral to immune function (C1ql2), neurogenesis (Sox11) and receptor activity 

(Acvr1c, Adra2c, Drd1a) are among the regulated genes.  

Sox11 was identified as one of the genes regulated after both treatment durations, 

potentially signaling an important role for Sox11 in mediating antidepressants' mechanism 

of action. This finding encouraged us to consider Sox11as an interesting candidate gene 

for further investigations. Sox11 is a member of the Sox gene family that has been well 

characterized regarding its expression pattern in the developmental nervous system and 
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its role in neurogenesis, neural cell survival and neurite outgrowth (Bergsland et al., 

2006). During development, Sox11 is highly expressed in developing sensory neurons 

(Jankowski et al., 2009) and in brain areas that are important for neuron differentiation 

(Kuhlbrodt et al., 1998). Importantly, Sox11 gene expression is regulated both spatially 

and temporally (Wilson and Koopman, 2002), meaning that its expression is reduced in 

late stages of gestation and remains low in adult neurons (Jankowski et al., 2009). 

Developmental studies have shown that Sox11 plays a crucial role in embryo 

development. This is further demonstrated in Sox11 knockout studies, which have 

revealed that total Sox11 knockout mice are embryonically lethal, whereas its partial 

depletion results in various craniofacial and skeletal malformations, asplenia and 

hypoplasia of the lung and stomach, altogether suggesting an important role of Sox11 in 

tissue remodeling. These findings are in line with the human situation (Sock et al., 2004). 

Jankowski and coworkers provide evidences that Sox11 plays a central role in regulating 

processes, which in turn promote neurite growth as well as neuron survival (Jankowski et 

al., 2006). Studies could show that the basal level of Sox11 expression is lower during 

adult hood compared to the developmental stage. However, it was found to be 

upregulated after nerve injury and was associated with injury-induced neuritogenesis 

(Elliott et al., 2003; Tanabe et al., 2003). 

4.6 Sox11- a transcription factor and its putative role in emotional behavior 

Only very little is known about a putative role of Sox11 in modulating emotional behavior.  

4.6.1 Paroxetine is leading to a robust regulation of Sox11  

We, therefore, continued to dissect the role of Sox11 in the neurobiology underlying 

antidepressants' mechanism of action in detail. We were able to show a significant 

upregulation of Sox11 mRNA levels, especially in the hippocampal DG, after subchronic 

and chronic paroxetine treatment. These findings are in line with previous findings, where 

chronic paroxetine treatment lead to a upregulation of Sox11 mRNA levels in DBA mice 

(Sillaber et al., 2008). We found Sox11 mRNA levels already upregulated as early as 14d 

(i.e. after subchronic) of treatment. Interestingly, we did not see any changes in Sox11 

expression following an acute antidepressant administration, indicating that the 

paroxetine-induced time course of Sox11 induction corresponds with the delayed onset of 

action of antidepressant effects in the clinical setting. Sox11 has been well characterized 

regarding its expression pattern in the neurogenic niche and its role in neurogenesis, 

neural cell survival and neurite outgrowth (Bergsland et al., 2006). In the adult mouse 
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Sox11 is mainly expressed in the DG formation of the hippocampus (Haslinger et al., 

2009). There is a large body of literature supporting the idea that stimulation of 

neurogenesis in the adult brain could be a crucial step in the successful treatment of 

depressive disorders. For example, various studies have shown an interplay between 

antidepressants and neurogenesis (Braun and Jessberger, 2014; D'Sa and Duman, 2002; 

Sahay and Hen, 2007). However the effect of antidepressant treatment on neurogenesis 

are mainly detected after a chronic administration (Malberg et al., 2000).  

We were also interested as to whether the induction of Sox11 is a general antidepressant-

induced phenomenon, or whether it is rather exclusively triggered by SSRIs. Therefore, 

we performed a chronic treatment with reboxetine, a NERI. In this experiment, we did not 

find a significant difference in Sox11 gene expression levels between vehicle-treated 

animals and reboxetine-treated animals. These findings suggest that Sox11 upregulation 

is specific for SSRIs in general and paroxetine in particular. It is hypothesized that the 

antidepressant effect on neurogenesis is mediated by serotonergic regulation of 

intracellular signaling mechanisms that consequently upregulate transcription and growth 

factors and are thus involved in neuron proliferation (Duman et al., 2001). In support of 

this hypothesis, Santarelli and colleagues treated mice for three weeks with fluoxetine and 

found a significant upregulation of cell proliferation (70%) in the dentate gyrus. In a follow-

up experiment they used 5-HT1Areceptor knockout mice and the effect was gone 

(Santarelli et al., 2003). These results further support our findings that serotonergic 

modulations especially lead to changes in cell proliferation and thus neurogenesis. Hence, 

it is not surprising that transcription factors or genes that are involved in cell proliferation 

are more responsive to serotonergic antidepressants compared to antidepressants based 

on noradrenergic transmission. 

4.6.2 Sox11 overexpression reduces anxiety-related behavior, but is not 

influencing neurogenesis 

Considering that Sox11 was upregulated after chronic SSRI treatment and chronic 

antidepressant treatment lead to a less depressive-like phenotype in the FST, we 

hypothesized that viral overexpression of Sox11 may also lead to a less depressive-like 

phenotype, as reflected in the FST. However, we did not detect any behavioral alteration 

in the FST following a viral overexpression of Sox11.  

David and colleagues demonstrated that a fluoxetine-induced FST phenotype is 

independent of hippocampal neurogenesis (David et al., 2009). Thus, if the predominant 
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function of Sox11 in the DG is neurogenesis-related (Haslinger et al., 2009; Haslinger et 

al., 2009), an effect of Sox11 OE on the FST phenotype would be unlikely.  

However, we could clearly show that overexpression of Sox11 significantly reduced 

anxiety-related behavior compared to the vehicle-treated empty control animals. Besides 

its cognitive function, the hippocampus is also involved in regulating emotional behavior, 

including anxiety. Various studies have demonstrated a link between the hippocampus, 

neurogenesis and anxiety. For instance, Revest and colleagues could show that a 

decrease in adult-born neurons increases anxiety-related behavior (Revest et al., 2009). 

More specifically, they demonstrated that an impairment in neurogenesis is associated 

with an increased avoidance of novel and potentially threatening environments. Two other 

studies are in line with Revest et al., however they directly manipulated various target 

genes like Activin and TrkB receptor (Ageta et al., 2008; Bergami et al., 2008). As Sox11 

is involved in cell proliferation (Haslinger et al., 2009; Wegner, 2011) and thus directly 

and/or indirectly involved in neurogenesis, our results are fitting well to the previous 

findings. We were able to induce a less anxious phenotype by increasing Sox11 

expression. As we do not see any changes in the FST, we can ensure that the effect is 

selective for anxiety-related behavior. As reboxetine treatment modulated neither anxiety-

related behavior nor the expression of Sox11 mRNA, these findings support our 

hypothesis that Sox11 could be involved in shaping anxiety-related behavior.  

To further investigate whether the reduction in anxiety-like behavior might be 

accompanied by changes in cell proliferation, we performed a cell proliferation study. 

Therefore, we artificially overexpressed Sox11 via an AAV virus injection and investigated 

neurogenesis and cell proliferation in these animals. Animals were injected for three 

consecutive days with a 100mg/kg pulse of BrdU. This timeline was chosen, as it has 

been shown in previous studies, that DBA/2J mice show very little baseline neurogenesis. 

The rare of neurogenesis rate is highly heritable but also highly variable among the 

different inbred mouse strains (Kempermann et al., 2006). For example, it has been 

shown in a previous study, comparing four inbred mouse strains, that DBA/2J mice show 

a cell survival rate of 19% 4 weeks after the BrdU administration. In the same study, they 

additionally demonstrated that DBA/2J mice produce significantly fewer neurons 

compared to the other mouse strains under examination but significantly more astrocytes 

(Kempermann and Gage, 2002). To investigate cell proliferation, select animals were 

killed 2h or 28d after the last BrdU injection. When investigating differences in BrdU-

positive cells we did not find any differences between the two groups. Despite the known 
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role of Sox11 in neurogenesis, we did not observe an effect of Sox11 OE on cell 

proliferation or maturation. It has been shown that chronic stress reduces neurogenesis by 

modulating cell proliferation and maturation rate, whereas antidepressants are able to 

reverse such stress-induced effect (Braun and Jessberger, 2014; David et al., 2009; 

Duman and Monteggia, 2006; Santarelli et al., 2003). The lack of this effect in our study 

could be due to the stage-specific expression of Sox11 in cells of the adult neurogenic 

lineage (Haslinger et al., 2009). This means that Sox11 expression is associated with a 

downregulation of Sox2 and with the onset of DCX expression, an early neuronal lineage 

marker (Brown et al., 2003). The stage-specific restriction of Sox11 corresponds with the 

transient expression during embryonic development and more specifically embryonic 

neurogenesis (Bergsland et al., 2006; Hargrave et al., 1997), which suggests that Sox11 

controls similar stage-specific processes during embryonic development and adult 

neurogenesis (Haslinger et al., 2009). At present, Sox11 regulation in the adult 

neurogenic lineage remains unknown (Haslinger et al., 2009) and it is still unclear whether 

Sox11 itself is directly responsible for neurogenesis. Some studies suggest that Sox11 

plays an important role in adult neurogenesis (Sha et al., 2012; Jankowski et al., 2006; 

Haslinger et al., 2009), yet to our knowledge nobody has performed a BrdU experiment 

with Sox11 OE mice. Our experiment thus sheds light on this topic. We have shown that 

the viral overexpression of Sox11 itself is not sufficient to increase cell proliferation and 

cell maturation rates although we were able to detect behavioral phenotypes similar to 

those ascribed to alterations in neurogenesis. Although the overexpression of Sox11 

leads to an altered behavioral phenotype, the cellular explanation for this behavioral 

phenotype is not as obvious as first speculated. One explanation is founded on the stage-

specific expression of Sox11 in neurogenic lineage. We performed viral overexpression of 

Sox11 and then waited for 4 weeks in order to achieve robust overexpression of Sox11. 

As Sox11 expression is associated with the downregulation of Sox2 and with the onset of 

DCX expression (Brown et al., 2003), it is possible that we targeted the wrong time 

window to detect differences in neurogenesis due to viral Sox11 OE. Alternatively, the 

involvement of Sox11 in neurogenesis is not directly regulated via Sox11. If this would be 

the case, manipulation of Sox11 upstream targets are needed to potentially evoke robust 

neurogenesis effects on a cellular level. Nonetheless, further investigations are indeed 

necessary in order to find a cellular explanation for the anxiety-like phenotype. 
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4.6.3 Sox11 knockdown does not influence antidepressant response but leads to 

a higher mortality rate 

As Sox11 OE decreases anxiety-related behavior, we were also interested as to whether 

a knockdown of Sox11 is able to produce a more anxious phenotype and whether or not 

paroxetine would be able to reverse this effect. Surprisingly, hippocampal knockdown of 

Sox11 in adulthood, resulted in higher mortality rates in DBA/2J mice compared to the 

control group. It is known that Sox11 plays a crucial role during development and is 

essential for normal organ development (Sock et al., 2004). However, to-date there is 

nothing known about the role of a partial knockdown or knockout of Sox11 during 

adulthood. In our experimental animals we observed convulsive poses in the homecage in 

the late afternoon (n=3) and while weighing the animals (n=2). These observations led us 

to speculate that the high mortality rate in the Sox11 KD animals might be due to epileptic 

seizures. There is growing evidence in the literature that genes, which are involved in 

neurogenesis, may also play a significant role in epilepsy (Elliott et al., 2003). Therefore, 

further investigations are needed to investigate the role of Sox11 KD in adult DBA/2J mice 

in terms of epileptic seizures. Moreover, the mortality rate should be kept in mind when 

interpreting the behavioral parameters. In contrast to our previous experiments, we 

observed a paroxetine-induced hyperactivity. Hyperactivity resulting from antidepressant 

treatment is controversial with mixed findings in the literature. Some studies have shown a 

significant increase in basal locomotor activity following antidepressant treatment whereas 

others have shown no effect (Dulawa et al., 2004; Prut and Belzung, 2003). In the current 

experiment, the previous surgery may have confounded the results, and may possibly 

underlie the animals' hypersensitivity to paroxetine-induced hyperactivity. Interestingly, we 

did not observe an effect of Sox11 manipulation on the FST behavior. By contrast Sox11 

manipulation has a clear, directional effect on anxiety-like behavior. Specifically 

hippocampal overexpression of Sox11 promotes a reduced anxiety-like phenotype, 

whereas hippocampal knockdown of Sox11 suitably increased anxiety-related behavior in 

the DaLi, an effect that was independent of the treatment. These findings support a pivotal 

role of Sox11 in modulating anxiety-related behavior. To deliver a plausible explanation for 

this is not possible at the moment. Further investigations, at a cellular and behavioral 

level, are needed in order to advance our current understanding of the function and 

signaling cascades of Sox11. 

At present, we can conclude that Sox11 plays an essential role during adulthood and is a 

potential novel target for modulating anxiety-related behavior.  
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4.7 Summary 

Major depressive disorder is one of the most common mental disorders. It is a very 

complex and multifactorial psychiatric disease, which affects up to 20% of the general 

population (Kessler et al., 2005). Furthermore, unipolar depressive disorders pose an 

immense burden on society and the WHO ranked depression as the fourth leading cause 

of disability (Murray and Lopez, 1996; Rubinow, 2006). Additionally, bipolar disorders 

(episodes of major depression and mania) and anxiety are two diseases that most 

frequently overlap diagnostically with depression (Flint and Kendler, 2014). Despite the 

immense research that has been ongoing over the past decades, the pathophysiology of 

depression as well as the neurobiology underlying the surprisingly high heterogeneity in 

antidepressant treatment response are still largely unknown. 

The present study therefore aimed to identify novel targets mediating an individual 

antidepressant response in mice. Furthermore, we attempted to translate these findings to 

the clinical situation in order to detect novel biomarkers for antidepressant treatment 

outcome. As a first step, we investigated the pharmacological profile of paroxetine in order 

to define the minimum effective dose for DBA/2J mice. To our knowledge, this is the first 

study to extensively investigate the pharmacological profile of paroxetine in mice. 

Furthermore, the current thesis provides a compelling basis for the involvement of Sox11 

in anxiety-related behavior. We extensively investigated the function of Sox11 under 

various antidepressant substances, different treatment durations as well as after genetic 

manipulation to provide strong evidence that Sox11 is a promising target for anxiety-

related disorders. Previous studies have ascribed a potential role for Sox11 in 

neurogenesis (Haslinger et al., 2009; Mu et al., 2012a). Nevertheless, by genetically 

manipulating Sox11, we have shown that Sox11 alone is not sufficient to directly influence 

the neurogenesis rate in DBA/2J mice. Regardless, Sox11 is a very interesting candidate 

when investigating anxiety-related behavior. 

To address the problems of the delayed onset of antidepressant action, we aimed to 

identify novel targets mediating an early antidepressant response. Therefore, we 

performed a subchronic paroxetine treatment and investigated alterations in gene 

expression profiles in the periphery and the brain. In a next step, we integrated our 

findings with human data in order to assess whether such gene expression profiles are 

able to predict antidepressant response status in the human sample population. To our 

knowledge, this is the first study that was able to show such a prediction in antidepressant 
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response using a translational approach. These findings allow us to predict at an early 

stage, i.e. two weeks after treatment onset, whether the patient will show an appropriate 

response after 12 weeks of antidepressant treatment (Figure 44). Moreover, we were able 

to identify common transcription factors that seems to play a role in antidepressant 

treatment response. 

 

Figure 44: Achievements of this thesis. This experiment approach was able to solve some basic but important 

questions in depression research. However these data needs further investigations and some questions still need 

to be addressed. 

This study provides essential, novel information regarding gene regulation by 

antidepressant treatment and is therefore a good starting point for the identification of 

novel biomarkers mediating individual antidepressant response. We were able to shed 

new light on the field of antidepressant treatment outcome and more specifically, on early 

antidepressant response. Furthermore, our translational approach enabled us to translate 

our findings from mice to men and thus provides a good basis for further research. 
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