18,676 research outputs found

    Single hole and vortex excitations in the doped Rokhsar-Kivelson quantum dimer model on the triangular lattice

    Full text link
    We consider the doped Rokhsar-Kivelson quantum dimer model on the triangular lattice with one mobile hole (monomer) at the Rokhsar-Kivelson point. The motion of the hole is described by two branches of excitations: the hole may either move with or without a trapped Z2 vortex (vison). We perform a study of the hole dispersion in the limit where the hole hopping amplitude is much smaller than the interdimer interaction. In this limit, the hole without vison moves freely and has a tight-binding spectrum. On the other hand, the hole with a trapped vison is strongly constrained due to interference effects and can only move via higher-order virtual processes.Comment: 4 pages, 4 figures; minor changes, replaced by published versio

    Marketing Tips for Small-scale, Local Honey Bee Keepers in Northwest Arkansas

    Get PDF
    The objective of this thesis was to gain market information for beekeepers regarding different honey bee products and to provide information about economic feasibility when produced on a small, local scale. Since cost-of-production information about operating an apiary is widely available, the focus of this work was on gaining marketing knowledge. One of the objectives of the surveys was to develop a better sense of what potential resellers of honey bee products considered locally produced. Another objective was to determine preferences for honey bee product packaging as well as bee pollination services. Using that feedback, a marketing plan for different niche markets can be developed for part-time beekeeping operations. The survey results pertaining to local retailers and end users in Northwest Arkansas in 2016 suggested a supply radius near 100 miles and a preference for small packaging in general. Least cost supply, and at least regional brand recognition were not deemed as important as ensuring locally sourced products that can be sold at a premium. Different niche markets revealed both similar and different priorities related to these marketing aspects

    Minimal qudit code for a qubit in the phase-damping channel

    Full text link
    Using the stabilizer formalism we construct the minimal code into a D-dimensional Hilbert space (qudit) to protect a qubit against phase damping. The effectiveness of this code is then studied by means of input-output fidelity.Comment: 9 pages, 3 figures. REVTe

    Side-channel-free quantum key distribution

    Get PDF
    Quantum key distribution (QKD) offers the promise of absolutely secure communications. However, proofs of absolute security often assume perfect implementation from theory to experiment. Thus, existing systems may be prone to insidious side-channel attacks that rely on flaws in experimental implementation. Here we replace all real channels with virtual channels in a QKD protocol, making the relevant detectors and settings inside private spaces inaccessible while simultaneously acting as a Hilbert space filter to eliminate side-channel attacks. By using a quantum memory we find that we are able to bound the secret-key rate below by the entanglement-distillation rate computed over the distributed states.Comment: Considering general quantum systems, we extended QKD to the presence of an untrusted relay, whose measurement creates secret correlations in remote stations (achievable rate lower-bounded by the coherent information). This key ingredient, i.e., the use of a measurement-based untrusted relay, has been called 'measurement-device independence' in another arXiv submission (arXiv:1109.1473

    A First Comparison of SLOPE and Other LIGO Burst Event Trigger Generators

    Get PDF
    A number of different methods have been proposed to identify unanticipated burst sources of gravitational waves in data arising from LIGO and other gravitational wave detectors. When confronted with such a wide variety of methods one is moved to ask if they are all necessary, i.e. given detector data that is assumed to have no gravitational wave signals present, do they generally identify the same events with the same efficiency, or do they each 'see' different things in the detector? Here we consider three different methods, which have been used within the LIGO Scientific Collaboration as part of its search for unanticipated gravitational wave bursts. We find that each of these three different methods developed for identifying candidate gravitational wave burst sources are, in fact, attuned to significantly different features in detector data, suggesting that they may provide largely independent lists of candidate gravitational wave burst events.Comment: 10 Pages, 5 Figures, Presented at the 10th Gravitational Wave Data Analysis Workshop (GWDAW-10), 14-17 December 2005 at the University of Texas, Brownsvill
    • …
    corecore