260 research outputs found

    Infant Safety during and after Maternal Valacyclovir Therapy in Conjunction with Antiretroviral HIV-1 Prophylaxis in a Randomized Clinical Trial

    Get PDF
    <div><h3>Background</h3><p>Maternal administration of the acyclovir prodrug valacyclovir is compatible with pregnancy and breastfeeding. However, the safety profile of prolonged infant and maternal exposure to acyclovir in the context of antiretrovirals (ARVs) for prevention of mother-to-child HIV-1 transmission (PMTCT) has not been described.</p> <h3>Methods</h3><p>Pregnant Kenyan women co-infected with HIV-1/HSV-2 with CD4 counts > 250 cells/mm<sup>3</sup> were enrolled at 34 weeks gestation and randomized to twice daily 500 mg valacyclovir or placebo until 12 months postpartum. Women received zidovudine from 28 weeks gestation and single dose nevirapine was given to women and infants at the time of delivery for PMTCT. Infant blood was collected at 6 weeks for creatinine and ALT. Breast milk specimens were collected at 2 weeks postpartum from 71 women in the valacyclovir arm; acyclovir levels were determined for a random sample of 44 (62%) specimens. Fisher’s Exact and Wilcoxon rank-sum tests were used for analysis.</p> <h3>Results</h3><p>One hundred forty-eight women were randomized and 146 mother-infant pairs were followed postpartum. PMTCT ARVs were administered to 98% of infants and all mothers. Valacyclovir was not associated with infant or maternal toxicities or adverse events, and no congenital malformations were observed. Infant creatinine levels were all normal (< 0.83 mg/dl) and median creatinine (median 0.50 mg/dl) and infant growth did not differ between study arms. Acyclovir was detected in 35 (80%) of 44 breast milk samples collected at 2 weeks postpartum. Median and maximum acyclovir levels were 2.62 and 10.15 mg/ml, respectively (interquartile range 0.6–4.19).</p> <h3>Conclusions</h3><p>Exposure to PMTCT ARVs and acyclovir after maternal administration of valacyclovir during pregnancy and postpartum to women co-infected with HIV-1/HSV-2 was not associated with an increase in infant or maternal toxicities or adverse events.</p> <h3>Trial Registration</h3><p>ClinicalTrials.gov <a href="http://clinicaltrials.gov/ct2/show/NCT00530777">NCT00530777</a></p> </div

    PrP Expression, PrPSc Accumulation and Innervation of Splenic Compartments in Sheep Experimentally Infected with Scrapie

    Get PDF
    BACKGROUND: In prion disease, the peripheral expression of PrP(C) is necessary for the transfer of infectivity to the central nervous system. The spleen is involved in neuroinvasion and neural dissemination in prion diseases but the nature of this involvement is not known. The present study undertook the investigation of the spatial relationship between sites of PrP(Sc) accumulation, localisation of nerve fibres and PrP(C) expression in the tissue compartments of the spleen of scrapie-inoculated and control sheep. METHODOLOGY/PRINCIPAL FINDINGS: Laser microdissection and quantitative PCR were used to determine PrP mRNA levels and results were compared with immunohistochemical protocols to distinguish PrP(C) and PrP(Sc) in tissue compartments of the spleen. In sheep experimentally infected with scrapie, the major sites of accumulation of PrP(Sc) in the spleen, namely the lymphoid nodules and the marginal zone, expressed low levels of PrP mRNA. Double immunohistochemical labelling for PrP(Sc) and the pan-nerve fibre marker, PGP, was used to evaluate the density of innervation of splenic tissue compartments and the intimacy of association between PrP(Sc) and nerves. Some nerve fibres were observed to accompany blood vessels into the PrP(Sc)-laden germinal centres. However, the close association between nerves and PrP(Sc) was most apparent in the marginal zone. Other sites of close association were adjacent to the wall of the central artery of PALS and the outer rim of germinal centres. CONCLUSIONS/SIGNIFICANCE: The findings suggest that the degree of PrP(Sc) accumulation does not depend on the expression level of PrP(C). Though several splenic compartments may contribute to neuroinvasion, the marginal zone may play a central role in being the compartment with most apparent association between nerves and PrP(Sc)

    Therapeutic drug monitoring of ganciclovir for postnatal cytomegalovirus infection in an extremely low birth weight infant: a case report

    Get PDF
    Background: Ganciclovir is a therapeutic choice for extremely premature infants with severe postnatal cytomegalovirus disease, but little is known about its optimal dose size and dosing interval for them. Case presentation: We treated an extremely premature female infant with postnatal cytomegalovirus infection with intravenous administration of ganciclovir since 49 days of life (postmenstrual age of 31 weeks). After ganciclovir treatment was initiated at a dose of 5 mg/kg every 12 h, cytomegalovirus loads in the peripheral blood were markedly decreased. However, since plasma ganciclovir trough level was too high, the interval was extended to every 24 h. Subsequently, the trough level and the estimated 12-h area under the concentration-time curve (AUC0-12) were decreased from 3.5 mg/L to 0.3 mg/L and 53.9 mg ・ h/L to 19.2 mg ・ h/L, respectively, resulting in an exacerbation of viremia and clinical condition. Adjustment of dosing interval from 24 h to 12 h led to a peak level of 4.2 mg/L, trough level of 1.1 mg/L, and AUC0-12 of 31.8 mg ・ h/L, resulting in a marked suppression of viral load. Conclusions: Monitoring the therapeutic drug levels and cytomegalovirus loads is useful in obtaining a proper treatment effect and preventing overdosage during ganciclovir therapy in premature infants with postnatal cytomegalovirus infection

    Prion Protein Amino Acid Determinants of Differential Susceptibility and Molecular Feature of Prion Strains in Mice and Voles

    Get PDF
    The bank vole is a rodent susceptible to different prion strains from humans and various animal species. We analyzed the transmission features of different prions in a panel of seven rodent species which showed various degrees of phylogenetic affinity and specific prion protein (PrP) sequence divergences in order to investigate the basis of vole susceptibility in comparison to other rodent models. At first, we found a differential susceptibility of bank and field voles compared to C57Bl/6 and wood mice. Voles showed high susceptibility to sheep scrapie but were resistant to bovine spongiform encephalopathy, whereas C57Bl/6 and wood mice displayed opposite features. Infection with mouse-adapted scrapie 139A was faster in voles than in C57Bl/6 and wood mice. Moreover, a glycoprofile change was observed in voles, which was reverted upon back passage to mice. All strains replicated much faster in voles than in mice after adapting to the new species. PrP sequence comparison indicated a correlation between the transmission patterns and amino acids at positions 154 and 169 (Y and S in mice, N and N in voles). This correlation was confirmed when inoculating three additional rodent species: gerbils, spiny mice and oldfield mice with sheep scrapie and 139A. These rodents were chosen because oldfield mice do have the 154N and 169N substitutions, whereas gerbil and spiny mice do not have them. Our results suggest that PrP residues 154 and 169 drive the susceptibility, molecular phenotype and replication rate of prion strains in rodents. This might have implications for the assessment of host range and molecular traceability of prion strains, as well as for the development of improved animal models for prion diseases

    All clinically-relevant blood components transmit prion disease following a single blood transfusion: a sheep model of vCJD

    Get PDF
    Variant CJD (vCJD) is an incurable, infectious human disease, likely arising from the consumption of BSE-contaminated meat products. Whilst the epidemic appears to be waning, there is much concern that vCJD infection may be perpetuated in humans by the transfusion of contaminated blood products. Since 2004, several cases of transfusion-associated vCJD transmission have been reported and linked to blood collected from pre-clinically affected donors. Using an animal model in which the disease manifested resembles that of humans affected with vCJD, we examined which blood components used in human medicine are likely to pose the greatest risk of transmitting vCJD via transfusion. We collected two full units of blood from BSE-infected donor animals during the pre-clinical phase of infection. Using methods employed by transfusion services we prepared red cell concentrates, plasma and platelets units (including leucoreduced equivalents). Following transfusion, we showed that all components contain sufficient levels of infectivity to cause disease following only a single transfusion and also that leucoreduction did not prevent disease transmission. These data suggest that all blood components are vectors for prion disease transmission, and highlight the importance of multiple control measures to minimise the risk of human to human transmission of vCJD by blood transfusion

    Resistance of Bovine Spongiform Encephalopathy (BSE) Prions to Inactivation

    Get PDF
    Distinct prion strains often exhibit different incubation periods and patterns of neuropathological lesions. Strain characteristics are generally retained upon intraspecies transmission, but may change on transmission to another species. We investigated the inactivation of two related prions strains: BSE prions from cattle and mouse-passaged BSE prions, termed 301V. Inactivation was manipulated by exposure to sodium dodecyl sulfate (SDS), variations in pH, and different temperatures. Infectivity was measured using transgenic mouse lines that are highly susceptible to either BSE or 301V prions. Bioassays demonstrated that BSE prions are up to 1,000-fold more resistant to inactivation than 301V prions while Western immunoblotting showed that short acidic SDS treatments reduced protease-resistant PrPSc from BSE prions and 301V prions at similar rates. Our findings argue that despite being derived from BSE prions, mouse 301V prions are not necessarily a reliable model for cattle BSE prions. Extending these comparisons to human sporadic Creutzfeldt-Jakob disease and hamster Sc237 prions, we found that BSE prions were 10- and 106-fold more resistant to inactivation, respectively. Our studies contend that any prion inactivation procedures must be validated by bioassay against the prion strain for which they are intended to be used

    Plasmacytoid Dendritic Cells Sequester High Prion Titres at Early Stages of Prion Infection

    Get PDF
    In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood. A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles

    Transmission of Chronic Wasting Disease Identifies a Prion Strain Causing Cachexia and Heart Infection in Hamsters

    Get PDF
    Chronic wasting disease (CWD) is an emerging prion disease of free-ranging and captive cervids in North America. In this study we established a rodent model for CWD in Syrian golden hamsters that resemble key features of the disease in cervids including cachexia and infection of cardiac muscle. Following one to three serial passages of CWD from white-tailed deer into transgenic mice expressing the hamster prion protein gene, CWD was subsequently passaged into Syrian golden hamsters. In one passage line there were preclinical changes in locomotor activity and a loss of body mass prior to onset of subtle neurological symptoms around 340 days. The clinical symptoms included a prominent wasting disease, similar to cachexia, with a prolonged duration. Other features of CWD in hamsters that were similar to cervid CWD included the brain distribution of the disease-specific isoform of the prion protein, PrPSc, prion infection of the central and peripheral neuroendocrine system, and PrPSc deposition in cardiac muscle. There was also prominent PrPSc deposition in the nasal mucosa on the edge of the olfactory sensory epithelium with the lumen of the nasal airway that could have implications for CWD shedding into nasal secretions and disease transmission. Since the mechanism of wasting disease in prion diseases is unknown this hamster CWD model could provide a means to investigate the physiological basis of cachexia, which we propose is due to a prion-induced endocrinopathy. This prion disease phenotype has not been described in hamsters and we designate it as the β€˜wasting’ or WST strain of hamster CWD

    Targeting of prion-infected lymphoid cells to the central nervous system accelerates prion infection

    Get PDF
    BACKGROUND: Prions, composed of a misfolded protein designated PrP(Sc), are infectious agents causing fatal neurodegenerative diseases. We have shown previously that, following induction of experimental autoimmune encephalomyelitis, prion-infected mice succumb to disease significantly earlier than controls, concomitant with the deposition of PrP(Sc) aggregates in inflamed white matter areas. In the present work, we asked whether prion disease acceleration by experimental autoimmune encephalomyelitis results from infiltration of viable prion-infected immune cells into the central nervous system. METHODS: C57Bl/6 J mice underwent intraperitoneal inoculation with scrapie brain homogenates and were later induced with experimental autoimmune encephalomyelitis by inoculation of MOG(35-55) in complete Freund's adjuvant supplemented with pertussis toxin. Spleen and lymph node cells from the co-induced animals were reactivated and subsequently injected into naΓ―ve mice as viable cells or as cell homogenates. Control groups were infected with viable and homogenized scrapie immune cells only with complete Freund's adjuvant. Prion disease incubation times as well as levels and sites of PrP(Sc) deposition were next evaluated. RESULTS: We first show that acceleration of prion disease by experimental autoimmune encephalomyelitis requires the presence of high levels of spleen PrP(Sc). Next, we present evidence that mice infected with activated prion-experimental autoimmune encephalomyelitis viable cells succumb to prion disease considerably faster than do mice infected with equivalent cell extracts or other controls, concomitant with the deposition of PrP(Sc) aggregates in white matter areas in brains and spinal cords. CONCLUSIONS: Our results indicate that inflammatory targeting of viable prion-infected immune cells to the central nervous system accelerates prion disease propagation. We also show that in the absence of such targeting it is the load of PrP(Sc) in the inoculum that determines the infectivity titers for subsequent transmissions. Both of these conclusions have important clinical implications as related to the risk of prion disease contamination of blood products
    • …
    corecore