15,965 research outputs found

    Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation

    Full text link
    The modified Camassa-Holm (mCH) equation is a bi-Hamiltonian system possessing NN-peakon weak solutions, for all N1N\geq 1, in the setting of an integral formulation which is used in analysis for studying local well-posedness, global existence, and wave breaking for non-peakon solutions. Unlike the original Camassa-Holm equation, the two Hamiltonians of the mCH equation do not reduce to conserved integrals (constants of motion) for 22-peakon weak solutions. This perplexing situation is addressed here by finding an explicit conserved integral for NN-peakon weak solutions for all N2N\geq 2. When NN is even, the conserved integral is shown to provide a Hamiltonian structure with the use of a natural Poisson bracket that arises from reduction of one of the Hamiltonian structures of the mCH equation. But when NN is odd, the Hamiltonian equations of motion arising from the conserved integral using this Poisson bracket are found to differ from the dynamical equations for the mCH NN-peakon weak solutions. Moreover, the lack of conservation of the two Hamiltonians of the mCH equation when they are reduced to 22-peakon weak solutions is shown to extend to NN-peakon weak solutions for all N2N\geq 2. The connection between this loss of integrability structure and related work by Chang and Szmigielski on the Lax pair for the mCH equation is discussed.Comment: Minor errata in Eqns. (32) to (34) and Lemma 1 have been fixe

    Supersymmetric Yang-Mills theories with local coupling: The supersymmetric gauge

    Get PDF
    Supersymmetric pure Yang-Mills theory is formulated with a local, i.e. space-time dependent, complex coupling in superspace. Super-Yang-Mills theories with local coupling have an anomaly, which has been first investigated in the Wess-Zumino gauge and there identified as an anomaly of supersymmetry. In a manifest supersymmetric formulation the anomaly appears in two other identities: The first one describes the non-renormalization of the topological term, the second relates the renormalization of the gauge coupling to the renormalization of the complex supercoupling. Only one of the two identities can be maintained in perturbation theory. We discuss the two versions and derive the respective beta function of the local supercoupling, which is non-holomorphic in the first version, but directly related to the coupling renormalization, and holomorphic in the second version, but has a non-trivial, i.e.anomalous, relation to the beta function of the gauge coupling.Comment: References correcte

    A temperature-dependent phase-field model for phase separation and damage

    Get PDF
    In this paper we study a model for phase separation and damage in thermoviscoelastic materials. The main novelty of the paper consists in the fact that, in contrast with previous works in the literature (cf., e.g., [C. Heinemann, C. Kraus: Existence results of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage. Adv. Math. Sci. Appl. 21 (2011), 321--359] and [C. Heinemann, C. Kraus: Existence results for diffuse interface models describing phase separation and damage. European J. Appl. Math. 24 (2013), 179--211]), we encompass in the model thermal processes, nonlinearly coupled with the damage, concentration and displacement evolutions. More in particular, we prove the existence of "entropic weak solutions", resorting to a solvability concept first introduced in [E. Feireisl: Mathematical theory of compressible, viscous, and heat conducting fluids. Comput. Math. Appl. 53 (2007), 461--490] in the framework of Fourier-Navier-Stokes systems and then recently employed in [E. Feireisl, H. Petzeltov\'a, E. Rocca: Existence of solutions to a phase transition model with microscopic movements. Math. Methods Appl. Sci. 32 (2009), 1345--1369], [E. Rocca, R. Rossi: "Entropic" solutions to a thermodynamically consistent PDE system for phase transitions and damage. SIAM J. Math. Anal., 47 (2015), 2519--2586] for the study of PDE systems for phase transition and damage. Our global-in-time existence result is obtained by passing to the limit in a carefully devised time-discretization scheme

    Strategies for distributing goals in a team of cooperative agents

    Get PDF
    This paper addresses the problem of distributing goals to individual agents inside a team of cooperative agents. It shows that several parameters determine the goals of particular agents. The first parameter is the set of goals allocated to the team; the second parameter is the description of the real actual world; the third parameter is the description of the agents' ability and commitments. The last parameter is the strategy the team agrees on: for each precise goal, the team may define several strategies which are orders between agents representing, for instance, their relative competence or their relative cost. This paper also shows how to combine strategies. The method used here assumes an order of priority between strategie
    corecore