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2 SUPAERO, 10 avenue édouard Belin, 31055 Toulouse, France
garion@supaero.fr

Abstract. This paper addresses the problem of distributing goals to
individual agents inside a team of cooperative agents.
It shows that several parameters determine the goals of particular agents.
The first parameter is the set of goals allocated to the team; the second
parameter is the description of the real actual world; the third parame-
ter is the description of the agents’ ability and commitments. The last
parameter is the strategy the team agrees on: for each precise goal, the
team may define several strategies which are orders between agents rep-
resenting, for instance, their relative competence or their relative cost.
This paper also shows how to combine strategies. The method used here
assumes an order of priority between strategies.

1 Introduction

Reaching a complex goal often needs to consider a group of agents which must
cooperate in order to achieve this goal [1]. For instance, nations often group
into coalitions in order to maintain peace in a conflicting area, that means shar-
ing information about the situation, providing emergency medical treatment,
providing displaced civilian services, providing engineering infrastructure sup-
port etc [2].

The goal allocated to the group is some proposition that one desires the
group to make true, or equivalently, goals define some desirable worlds the group
must reach. But, as Boutilier noted it in [3], goals are not always achievable. It
may happen for instance that none of the agents in the team has the ability to
make this proposition true. Furthermore, goals may be defeated for reasons other
than inability. It is often natural to specify general goals, but list exceptional
circumstances that make the goal less desirable than the alternatives. Rather
than a categorical distinction between desirable and undesirable situations, it is
more general to rank worlds according to their degree of preference. The most
preferred worlds correspond to goal states in the classical sense. However, when
such states are unreachable, a ranking on alternatives becomes necessary.

In a previous paper [4] we have considered this general case and we have
defined a goal distribution process which allocates goals to individual agents
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of a group, according to the preferences representing the goals allocated to the
group, the actual world and the agents’ ability and commitments.

The agents we consider are cooperative in the sense that they do not contra-
dict each other in their commitments (for instance, we discard the case when one
agent commits himself to make a proposition true whilst another one commits
himself to make this proposition false) and their commitments do not contradict
a goal of the group. Notice that this process of goals distribution is not based
on a negotiation between the agents like in [5, 6, 7]. More precisely, it may be
viewed as managed by a central authority which knows how is the real world,
what are the agents’ abilities and the agents’ commitments and which allocates
to each agent some goals which correspond to the most preferred situations the
group can thus reach.

In this present paper, we refine this work and we show that a fourth parameter
can be used for determining the goals of particular agents. This last parameter
is the strategies the team agrees on. We will see that a strategy depends on a
particular goal and is an order between the agents that are able to achieve it.
For instance, given a particular goal, agents may be ordered according to their
relative competence for achieving it. Agents may also be ordered according to
their relative cost for achieving this goal.

We will also show how to combine strategies. For instance, given a particular
goal, we could want to order agents by taking into account their relative com-
petence and their relative cost. The method used here for combining strategies
assumes a priority order between the strategies.

This paper is organized as follows. In section 2, we summarize the process
described in [4]. This process is illustrated on an example in section 3. Section 4
focuses on the notion of strategies and combination of strategies. This point is
illustrated in section 5. Finally, section 6 is devoted to a discussion.

2 Distribution of Goals Addressed to a Group of Agents

2.1 Preferences Representation

To represent preferences, we use a logic [3], [8] whose language LB is based on a
set of atomic propositional variables PROP with the usual connectives and two
modal operators �,

←
�.

Models are of the form M = 〈W, ≤ val〉. W is a set of possible worlds, ≤ is a
total preference preorder on W (a reflexive and transitive relation on W × W ).
If w and w′ are two worlds of W , then w ≤ w′ means that w is at least as
preferred as w′. Finally, val is a valuation function on W 1. For any formula ϕ
of W , val(ϕ) is the set of worlds of W which classically satisfy ϕ.

Let M = 〈W, ≤, val〉 be a model. Satisfaction of modal formulas is defined
as follows:

1 I.e. val : PROP → 2W and val is such that val(¬ϕ) = W − val(ϕ) and val(ϕ1 ∧
ϕ2) = val(ϕ1) ∩ val(ϕ2).



– M |=w �ϕ iff ∀w′ ∈ W w′ ≤ w =⇒ M |=w′ ϕ.
– M |=w

←
� ϕ iff ∀w′ ∈ W w′ �≤ w =⇒ M |=w′ ϕ.

�ϕ is true at a world w if and only if ϕ is true at all worlds at least as
preferred as w (including w).

←
� ϕ is true at world w if and only if ϕ is true at

all the worlds less preferred than w.
Boutilier then defines two dual modal operators : �ϕ ≡def ¬�¬ϕ means that

ϕ is true at some equally or more preferred world and
←
� ϕ ≡def ¬ ←� ¬ϕ means

that ϕ is true at some less preferred world.
↔
� ϕ ≡def �ϕ∧ ←

� ϕ and
↔
� ϕ ≡def �ϕ∨ ←

� ϕ correspond respectively to
classical necessity and possibility.

A formula ϕ is valid in M (noted M |= ϕ) iff ∀w ∈ W M |=w ϕ.
Conditional preferences are formulas of the form I(β|α) which means that

“ideally, if α is true, then β is true”. The connective I(−|−) is defined by
I(β|α) ≡def

↔
� ¬α∨ ↔

� (α ∧ (�α → β)). I(β|α) is valid in M iff either α is
false in every world of W , or there is some world w which satisfies α and such
that every world at least as preferred as w satisfies α → β.

2.2 Description of the Actual World

Following a centralized approach, we consider that the team of agents is aware
of a shared description of the situation. The actual world is thus described by
a finite and consistent set of formulas of PROP . It is denoted KB2. Cl(KB)
denotes its closure by classical logical consequence3.

2.3 Controllability

Let A = {a1, . . . , an} be a finite set of agents. Like Boutilier, for each agent ai,
we partition the literals of PROP into two sets: Cai

(the literals that ai can
control) and Cai

(the literals uncontrollable by ai). We assume that each agent
of the group controls at least one literal:

Assumption 1. ∀ai ∈ A Cai �= φ

The notion of controllability for a group of agents is then defined by:

Definition 1. Let lit(PROP ) be the set of literals in the propositional language.
The set of controllable literals by the group of agents is C =

⋃

ai∈A
Cai

and the

set of uncontrollable literals by the group of agents is C = lit(PROP ) − C.

Extension to general propositions is given below:

Definition 2. Let w and w′ be two worlds of W . Let us note w′−w = {l : w′ |=
l, w |= ¬l and l is a literal}. A proposition ϕ is:

2 Knowledge Base
3 In the original work, this closure is defined as a default closure.



– controllable iff ∀w ∈ W (w |= ¬ϕ ∃w′ ∈ W w′ |= ϕ and (w′ − w) ⊆ C);
– influenceable iff ∃w ∈ W (w |= ¬ϕ ∃w′ ∈ W w′ |= ϕ and (w′ − w) ⊆ C). In

this case, we say that ϕ is influenceable in w.
– uninfluenceable iff it is not influenceable.

2.4 Contexts

Definition 3. A world w ∈ W is a context for some influenceable proposition
ϕ iff ϕ is influenceable in w or w |= ϕ.

The contexts of an influenceable proposition ϕ are the worlds in which either
ϕ is false but the agent can change the valuations of some controllable literal to
make ϕ true, or the worlds in which ϕ is already true.

Definition 4. The set on non-contextual propositions of KB is defined by:
NC(KB) = {ϕ ∈ Cl(KB) : Cl(KB) is not a context for ¬ϕ}

NC(KB) represents the propositions whose truth value will not be changed
by some agents’ actions (because the group of agents has no ability to do that).
We suppose here that NC(KB) is complete.

2.5 CK-Goals of the Group

Definition 5. Let P be a set of conditional preferences. ϕ is a CK goal4 for A
iff P |= I(ϕ|NC(KB)) and KB is a context for ϕ.

2.6 Commitments

Given a literal controllable by an agent, this agent can express that it will do
an action that will keep or make this the literal true (we say that the agent
commits itself to achieve the literal), or the agent can express that it will not
do an action that can make the literal true (we will say that the agent commits
itself not to achieve the literal), or finally, the agent can express nothing about
the literal (we will say that the agent does not commit itself neither to achieve
the literal nor not to achieve the literal).

To represent the commitments of each agent ai, we will use three subsets
of Cai : Com+,ai , Com−,ai and Pai . defined as follows. If l is a literal, if l
is controllable by ai and l ∈ Com+,ai

, it means that “the agent ai commits
itself to achieve l”; if l is a literal, if l is controllable by ai and l ∈ Com−,ai ,
it means that “the agent ai commits itself not to achieve l”. Finally, Pai =
Cai − (Com+,ai ∪Com−,ai) is the set of controllable literals by ai and for which
ai does not commit itself to anything (i.e. ai does not commit itself neither to
achieve them nor not to achieve them).

We impose two constraints on those sets.

4 For Complete-Knowledge goal as introduced by Boutilier.



Constraint 1. ∀ai ∈ A Com+,ai
is consistent.

Constraint 2. ∀ai ∈ A Com+,ai ∩ Com−,ai = φ

Those two constraints express a kind of consistency for the agent’s commit-
ments. The first constraint expresses the fact that an agent does not commit
itself to achieve both l and ¬l. The second constraint expresses the fact that an
agent cannot commit itself both to achieve l and not to achieve l.

Definition 6. Com+,A is the set of positive commitments of the agents:
Com+,A =

⋃

ai∈A
Com+,ai

Com−,A is the set of “negative” commitments of the agents:
Com−,A = {l ∈ KB : ∀ai ∈ A ¬l controllable by ai ⇒ ¬l ∈ Com−,ai}

The meaning of Com−,A is the following: if all the agents that control a
literal l commit themselves not to achieve l and ¬l ∈ KB, we will consider that
¬l will remain true. We suppose that there is no external intervention.

An assumption that we do on the agents’ commitments is: every CK goal of
A is consistent with the union of Com+,A and of Com−,A.

Assumption 2. For every formula ϕ such that P |= I(ϕ|NC(KB)) and KB
is a context for ϕ, then Com−,A ∪ Com+,A ∪ {ϕ} is consistent.

This restriction allows to eliminate some problematic cases like the case where
an agent which controls l commits itself to achieve l and another one which
controls ¬l commits itself to achieve ¬l (i.e. Com+,A not consistent). It also
eliminates the case where a literal, which is not consistent with the group’s CK
goals, is true in KB and will remain true because the agents of the group which
could make it false do not commit themselves to it, or finally, the case where the
positive and negative commitments of the group are not consistent with some
CK goal of the group. If this assumption is not verified, the agents must review
their commitments.

2.7 Effective Goals

If the assumption 2 is verified, then the agents’ commitments are consistent with
the group’s CK goals. The goals of each agent do not only depend on NC(KB),
but also on the commitments of the other agents.

Definition 7. We define:

D(KB) = NC(KB) ∪ Com+,A ∪ Com−,A

D(KB) contains the propositions of KB for which KB is not a context, i.e.
NC(KB), plus the set of positive commitments of the agents, i.e. Com+,A and
the set of “negative” commitments of the agents, i.e. Com−,A. We have proved
that D(KB) is consistent. This set will be used in the conditional part of I(−|−)
to deduce the effective goals of each agent as follows:



Definition 8. Let P be a set of preferences addressed to the group A. ϕ is an
effective goal for ai, denoted by EGoalai

(ϕ), iff P |= I(ϕ|D(KB)) and KB is a
context for ϕ for ai.

As we use the I(−|−) operator, we are sure that an agent cannot have con-
tradictory goals.

Effective atomic goals are defined by :

Definition 9. Let P be a set of conditional preferences. A set of atomic goals
is a set of controllable literals L = {l1, . . . , ln} such that:

– ∀i ∈ {1, . . . , n} Cl(KB) is a context for li.
– for all CK goal ϕ given P, P |= NC(KB) ∧ L → ϕ.

In the following, Ag(ϕ) will denote the set of agents who have ϕ as effective
goal:

Definition 10. Ag(ϕ) = {ai ∈ A : Σ |= I(ϕ|D(KB)) et KB is a context for
ϕ for ai}.

3 Example

Let us consider a group of two agents a1 and a2 and assume that the preferences
imposed to the group {a1, a2} are the following: if the door is sanded, then it
should be lacquered and not covered with paper and if the door is not sanded,
then it should be covered with paper and not lacquered.

The representation of this scenario is the following: P = {I(l ∧ ¬p|s), I(p ∧
¬l|¬s)}. For each model of P, I(l ∧ ¬p|s) means that there is a world which
satisfies s and such that all preferred worlds satisfy s → l ∧ ¬p. I(p ∧ ¬l|¬s)
means that there is a world which satisfies ¬s and such that all preferred worlds
satisfy ¬s → ¬l ∧ p.

1. Suppose that KB = {s,¬l, ¬p} i.e. the door is sanded but not lacquered nor
covered with paper. We have Cl(KB) = KB.
Suppose that ¬s is uncontrollable by the agents (i.e. the agents have no
“means” to unsand the door). Furthermore, suppose that Ca1 = {l} and
that Ca2 = {p, ¬p} (i.e. a1 can lacquer the door, a2 can cover it with paper
or remove the paper if necessary). In this case, NC(KB) = {s}, because
KB is a context for l and for p. l ∧ ¬p is a CK goal of the group5.
If the agents do not commit themselves to anything, D(KB) = {s}, and
then EGoala1(l) and EGoala2(¬p) hold. a1 has for atomic goal set {l} (i.e.
its only goal is to lacquer the door) and a2 has {¬p} for atomic goals set (i.e.
its only goal is not to cover the door with paper). This implies Ag(l) = a1,
Ag(¬p) = a2 and Ag(¬l) = Ag(s) = Ag(¬s) = Ag(p) = ∅

5 In fact, it is theonly one that is interesting. We can also deduce for instance that
(l ∧ ¬p) ∨ p is a CK goal of the group.



2. Suppose now that KB = {¬s,¬l, ¬p}, Ca1 = {l, ¬l} and Ca2 = {s, p,¬p}.
In this case, NC(KB) = φ and (l ∧ ¬p) ∨ (¬l ∧ p) is a CK goal of the group.
If D(KB) = φ (i.e. the agents do not commit themselves to anything), no
effective goal can be derived, because a2 controls s and could make s true.
But if a2 commits itself not to achieve s (i.e. it commits itself not to sand the
door), then Com−({a1, a2} = {¬s} and EGoala2(p) and EGoala1(¬l) can
be deduced: a2 has for effective goal to cover the door with paper and a1 has
for effective goal to keep the door unlacquered. I.e Ag(p) = a2, Ag(¬l) = a1
and Ag(l) = Ag(¬p) = Ag(s) = Ag(¬s) = ∅

4 Strategies

The process described in the previous sections allocates goals to agents by taking
into account their ability and their commitments. Here, we show how to extend
this process in order to take into account more characteristics of the agents (like
for instance, their competence, their cost or the required duration for achieving
a goal). But, in order to be as general as possible, these characteristics are
represented by preference order among the agents and are associated with each
goal. These preference orders are called strategies.

4.1 Mathematical Preliminaries and Notations

Definition 11. Let E be a set. ≤E is an order on E iff ≤E is a reflexive,
anti-symmetrical and transitive relation on E.

Definition 12. Let E be a set and ≤E an order on E. Then min≤E
(E) = {ei ∈

E : ∀ej ∈ E ej ≤E ei ⇒ ej = ei}

We define also the minimum of a set for a family of orders.

Definition 13. Let E be a set and ≤E= {≤i
E : i ∈ {1, . . . , n}} a set of orders

on E. Then min≤E
(E) =

⋂

i∈{1,...,n}
min≤i

E
E.

4.2 Notion of Strategy

Definition 14. A strategy is a function S : lit(PROP ) → A × A such that
for any literal l, S(l) is an order ≤S(l) on Ag(l).

Being a function, a strategy associates a literal with at most one order which
will be used to select one or several agents. For instance, let us consider a group
of three agents {a1, a2, a3} achieving a task l. We know that a1 and a2 are more
competent than a3 to do l. We can define a strategy S reflecting this relative
level of competence by imposing that a1 ≤S(l) a3 and a2 ≤S(l) a3 hold.



4.3 Effective Goals

The notion of effective goals can then be refined by taking into account the
notion of strategy as follows:

Definition 15. A′ ⊆ A is optimal for l according to the strategy S iff A′ =
min≤S(ϕ) Ag(l)

This is denoted by OGoalSA′(l). This means intuitively that A′ is the subgroup
of agents preferred according to S in order to achieve l.

Let us notice some basic properties:

– As A′ ⊆ Ag(l), every agent in A′ is such that l is an effective goal for it;
– Consider a literal l such that l is an effective goal for only one agent. In

this case, according to the previous definition, this agent will be optimal
for l whatever the strategy we consider (if we assimilate the agent and the
subgroup constituted by this single agent).

– Let l be a literal which is not an effective goal. In this case, Ag(l) = ∅. Thus,
for any strategy S, min≤S(l)Ag(l) = ∅. So OGoalS∅ (l) holds and no agent is
optimal for l.

4.4 Families of Strategies

We present in the following two main classifications of strategies.

Selective and Non-selective Strategies. Selective strategies are strategies
which select a single agent among the agents for which l is an effective goal.

Definition 16. A strategy S is a selective strategy for l iff | min≤S(ϕ) Ag(ϕ)|=1.

Example 1. Let us resume the example provided in section 3. Suppose that
KB = {¬p,¬l, ¬r}, Ca1 = {p, l} and Ca2 = {l, r, ¬r}. If a1 commits itself
to do p and a2 commits itself to do l, then D(KB) = {p, l}. Thus OGoala1(p∧ l)
and OGoala2(l ∧ ¬r). Both a1 and a2 have l for effective goal.

First, notice that as Ag(p) = {a1} and Ag(¬r) = {a2}, for every strategy
(S), OGoalS{a1}(p) and OGoalS{a2}(¬r) hold.

Consider here a selective strategy S. Suppose that min≤S(l) Ag(l) = {a1},
then OGoalS{a1}(p), OGoalS{a2}(¬r) and OGoalS{a1}(l) hold.

Non-selective strategies are strategies which allocate a goal to several agents.

Definition 17. A strategy S is a non-selective strategy for l iff | min≤S(ϕ)

Ag(ϕ)| > 1.

Example 2. In the previous example, suppose now that S is a non-selective strat-
egy for l, then |min≤S(ϕ) Ag(ϕ)| > 1. But Ag(ϕ) = {a1, a2}, thus min≤S(ϕ) Ag(ϕ)
= {a1, a2}. In this case, we cannot deduce that OGoalS{a1}(l) nor OGoalS{a2}(l)
holds. But OGoalS{a1,a2}(l) holds.



Voluntary and Non-voluntary Strategies. Voluntary strategies assign a
task to the agents which committed themselves to achieve it. The formal defini-
tion is the following:

Definition 18. Let l be a literal and S a strategy. S is a voluntary strategyϕ
iff ∀ai ∈ Ag(l) ∀aj ∈ Ag(l) ai ≤S(l) aj iff Eng+(ai) |= l and Eng+(aj) �|= l.

By using such an order, all the agents in min≤S(ϕ) Ag(l) commit themselves
to achieve l. Non-voluntary strategies do not assign a goal to the agents which
commit themselves not to achieve it. These strategies are less restrictive than
the previous ones: an agent which did not commit itself to do l nor to not do l
can be selected.

Definition 19. Let l be a literal and S a strategy. S is a non-voluntary strategy
for l iff ∀ai ∈ Ag(l) ∀aj ∈ Ag(l) ai ≤S(l) aj iff Eng−(ai) �|= l and Eng−(aj) |= l.

4.5 Combining Strategies

We can wonder on what we will define strategies. The first possibility is to use
“primitive” strategies, i.e. strategies which are defined on only one criteria. This
criteria can be for instance the relative competence of the agents, the cost of
each agent in term of resources or the time an agent will take in order to achieve
the task.

There are of course lots of other primitive criteria on which a strategy can be
based. Most important is the fact that “in real life”, such decisions are not taken
considering only one primitive factor, but several criteria which are combined
in order to determine the “best” agents to select. To take this into account, we
have to combine strategies.

For doing so, we suggest to use a priority relation between strategies. This
comes to associate levels of importance to criteria. For instance, we could want
to choose the agents which are, for a given task, the most competent to achieve
it and the less costly, assuming that the competence is a criteria which is more
important than the cost.

In the following, we present a mathematical framework for combining
strategies.

Our objective is the following: we consider two orders ≤1 and ≤2 on the same
set E and we want to obtain one or several orders ≤1◦2, called orders combined
considering ≤1 having priority on ≤2, which verify first the order ≤1 and then
are “completed” by a part of ≤2. We suggest to use the technique developed in
belief bases priority merging [9] by representing the order relation by a binary
predicate of a first order logic.

Definition 20. Let E = {e1, . . . , en} be a finite set. Let ≤E= {≤i : i ∈ N} the
set of possible orders on E. E and ≤E are represented by the first-order language
LE and the theory TE defined as in the following:

1. the language LE is constituted by classical logical symbols (an enumerable
set of variables, connectives, quantifiers), a set of constants symbols defined



by {e1, . . . , en}, a set of predicate symbols {�i : ≤i∈≤E} ∪ {=} where
each �i and = are binary predicate symbols.

2. TE = {¬(ei = ej) : (i, j) ∈ {1 . . . n}2 i �= j} ∪
⋃

≤i∈≤E

RAT(�i)

where RAT (�i) = {∀x �i (x, x), ∀x∀y �i (x, y)∧ �i (y, x) → x =
y, ∀x∀y∀z �i (x, y)∧ �i (y, z) →�i (x, z)}.

The theory TE lists the Unique Name Axioms and the mathematical prop-
erties of orders. For the sake of simplicity, we will denote �i (x, y) by x �i y in
the following.

When someone wants to represent an order on a set, he/she does not de-
scribe the order by extension. On the contrary, he/she gives the relations which
are verified by the elements of the set, the remaining relations are deduced by
using the mathematical properties of orders. Thus, we will consider a set of ex-
plicit literals which will allow to generate the whole order (by using transitivity,
antisymmetry and reflexivity).

For instance, if we consider a set E1 = {a1, a2, a3}, then the explicit set
{a1 ≤E1 a2, a2 ≤E1 a3} allows to build the order ≤E1 on {a1, a2, a3} such that
a1 ≤E1 a2, a1 ≤E1 a3, a2 ≤E1 a3, a1 ≤E1 a1, a2 ≤E1 a2, a3 ≤E1 a3, a2 �≤E1 a1,
a3 �≤E1 a2 and a3 �≤E1 a1.

We will characterize orders by generating them from explicit sets associated
to a theory.

Definition 21. Let E be a set, LE and TE as previously defined. Ei, set of
formulas of the kind ei �i ej with ei ∈ E and ej ∈ E is an explicit set iff
Cl(TE ∪ Ei) is consistent.

The order ≤i on E called order generated by Ei is defined by: ∀ei ∈ E ∀ej ∈
e ei ≤E ej iff Cl(TE ∪ Ei) � ei �i ej

It is easy to prove that we obtain an order by using the axioms in TE .
For instance, in the previous example, we can see that {a1 �E1 a2, a2 �E1 a3}

is an explicit set generating ≤E1 .
We now define how to combine two orders, one having priority on the other.

We use the explicit sets defining the orders for building maximal consistent sets
of first-order formulas. Notice that we can obtain several explicit sets.

Definition 22. Let E be a set and LE the first-order language associated with
E. Let E1 E2 two explicit sets generating respectively the orders ≤1 and ≤2 on
E. We note E1→1◦2 = {ei �1◦2 ej : ei �1 ej ∈ E1} and E2→1◦2 = {ei �1◦2
ej : ei �2 ej ∈ E2}.

The explicit set E i
1◦2 is defined by E i

1◦2 = {ej �i
1◦2 ek : (ej �1◦2 ek) ∈

(E1→1◦2∪E i
2→1◦2)} where E i

2→1◦2 is a maximal subset of E2→1◦2 such that E1→1◦2∪
E i
2→1◦2 ∪ TE is consistent.

We note ≤i
1◦2 the order on E generated by E i

1◦2 and we denote by n1◦2 the
number of different orders we can obtain from ≤1 and ≤2 by giving priority
to ≤1.



If the different orders can be reduced to a single order, we will note ≤1◦2 this
order.

Definition 23. If ∃i ∈ {1, . . . , n1◦2} such that ∀j ∈ {1, . . . , n1◦2} Ej
1◦2 ⊆ E i

1◦2,
then we note E1◦2 = E i

1◦2.

Example 3. Let us consider E = {e1, e2, e3} and examine some examples:
Suppose that ≤1 is generated by {e3 �1 e2} and ≤2 is generated by {e2 �2

e3, e1 �2 e2}. Then E1→1◦2 = {e3 �1◦2 e2} and E2→1◦2 = {e2 �1◦2 e3, e1 �1◦2
e2}. The only subset of E2→1◦2 consistent with E1→1◦2 ∪ TE is {e1 �1◦2 e2}
(because E1→1◦2 ∪ TE � ¬e2 �1◦2 e3), thus we obtain an order ≤1◦2 generated
by {e3 �1◦2 e2, e1 �1◦2 e2}. In this case min≤1◦2 E = {e1, e3}.

Suppose now that ≤1 is generated by {e3 �1 e2} and ≤2 is generated by
{e1 �2 e3, e2 �2 e1}. Then E1→1◦2 = {e3 �1◦2 e2} et E2→1◦2 = {e1 �1◦2
e3, e2 �1◦2 e1}. There are two maximal consistent subset of E2→1◦2 consistent
with E1→1◦2 ∪ TE . Thus we obtain two orders: ≤1

1◦2, generated by {e3 ≤1
1◦2

e2, e1 ≤1
1◦2 e3} and ≤2

1◦2, generated by {e3 ≤2
1◦2 e2, e2 ≤2

1◦2 e1}. In this case,
min≤1◦2 E = ∅.

5 Example

Let us resume the example in section 3 and consider a group of three agents
{a1, a2, a3}. Let us suppose that KB = {¬s,¬l, ¬p}, that Ca1 = {s, l}, that
Ca2 = {l, p, ¬p} and that Ca3 = {l}. if a1 commits itself to do s, that a2 and
a3 commit themselves to do l, then D(KB) = {s, l}. Thus OGoala1(s ∧ l),
OGoala2(l ∧ ¬p) and OGoala3(l) hold. The three agents have to lacquer the
door.

Let us suppose that we do not want that several agents have the same task
for efficiency reason. We have to find a selective strategy to select only one agent.

A voluntary strategy SV for l gives the following order: a2 ≤SV (l) a1 and
a3 ≤SV (l) a1. This strategy is not sufficient to select a single agent because it
cannot choose between a2 and a3.

Let us suppose that there is a strategy SE for l which reflects the relative
efficiency of the agents to achieve l: a1 ≤SE(l) a2 and a2 ≤SE(l) a3. In this case,
there are two solutions: either ≤SE(l)◦SV (l) is chosen (the efficiency of the agent
is privileged) and thus a1 is optimal for l, either ≤SV (l)◦SC(l) is chosen (the
voluntary agents are privileged) and in this case a2 is optimal for l.

6 Discussion

This work focused on determining the individual goals of agents from goals
addressed to a team of agents, a representation of agents and strategies. In
order to do that, we have relied on the support of some previous work and
Boutilier’s work on qualitative decision theory. We have defined the notion of
strategy for allocating tasks to a sub-team of agents and we have shown how to



combine strategies in order to refine the allocation process. We are aware that,
as for the strategies combination method, we could have used another one like,
for instance an arbitration method [10]. It would have come to select the “less
worst” agent given all the primitive criteria (this can be viewed as a maximin
selection). This present work does not contribute in combination techniques. Its
originality concerns the use of the Qualitative Decision Logic to the case of a
team of several agents and the extension of the model of agents since we consider
their ability, their commitments and, through the notion of strategy, any other
characteristics we want.

However, this work is rather preliminary and it could be extended in several
ways.

First, instead of having an unique set KB which represents a common point
of view about the real world, we could consider that the agents do not share the
same beliefs about the real world. In the worst cases, these beliefs may happen to
be contradictory and belief bases merging techniques (cf. [10, 11]) could be used
in order to solve the conflicts. We could also consider that there is no central
entity and that the agents communicate in order to inform the others about
their commitments.

We also intend to work on the notion of strategy in order to obtain gen-
eral properties on strategies and define global strategies. Moreover, the present
strategies are defined for literals only and we could envisage to define them to
propositions. However, in this case, relations between for instance S(l), S(l′) and
S(l ∧ l′) should be defined.
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10. Konieczny, S., Pino-Pérez, R.: Merging information under constraints: a qualitative
framework. Journal of Logic and Computation 12 (2002) 773–808

11. Cholvy, L., Garion, C.: Answering queries addressed to several databases according
to a majority approach. Journal of Intelligent Information Systems 22 (2004) 175–
201


	Introduction
	Distribution of Goals Addressed to a Group of Agents
	Preferences Representation
	Description of the Actual World
	Controllability
	Contexts
	CK-Goals of the Group
	Commitments
	Effective Goals

	Example
	Strategies
	Mathematical Preliminaries and Notations
	Notion of Strategy
	Effective Goals
	Families of Strategies
	Combining Strategies

	Example
	Discussion

