8 research outputs found

    A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control

    Get PDF
    Many boundary controlled and observed Partial Differential Equations can be represented as port-Hamiltonian systems with dissipation, involving a Stokes-Dirac geometrical structure together with constitutive relations. The Partitioned Finite Element Method, introduced in Cardoso-Ribeiro et al. (2018), is a structure preserving numerical method which defines an underlying Dirac structure, and constitutive relations in weak form, leading to finite-dimensional port-Hamiltonian Differential Algebraic systems (pHDAE). Different types of dissipation are examined: internal damping, boundary damping and also diffusion models

    The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature

    No full text

    Coffee consumption and reduced risk of developing type 2 diabetes: a systematic review with meta-analysis

    No full text
    corecore