1,403 research outputs found

    Spin instabilities and quantum phase transitions in integral and fractional quantum Hall states

    Full text link
    The inter-Landau-level spin excitations of quantum Hall states at filling factors nu=2 and 4/3 are investigated by exact numerical diagonalization for the situation in which the cyclotron (hbar*omega_c) and Zeeman (E_Z) splittings are comparable. The relevant quasiparticles and their interactions are studied, including stable spin wave and skyrmion bound states. For nu=2, a spin instability at a finite value of epsilon=hbar*omega_c-E_Z leads to an abrupt paramagnetic to ferromagnetic transition, in agreement with the mean-field approximation. However, for nu=4/3 a new and unexpected quantum phase transition is found which involves a gradual change from paramagnetic to ferromagnetic occupancy of the partially filled Landau level as epsilon is decreased.Comment: 4 pages, 5 figures, submitted to Phys.Rev.Let

    Electrostatic potential in a superconductor

    Full text link
    The electrostatic potential in a superconductor is studied. To this end Bardeen's extension of the Ginzburg-Landau theory to low temperatures is used to derive three Ginzburg-Landau equations - the Maxwell equation for the vector potential, the Schroedinger equation for the wave function and the Poisson equation for the electrostatic potential. The electrostatic and the thermodynamic potential compensate each other to a great extent resulting into an effective potential acting on the superconducting condensate. For the Abrikosov vortex lattice in Niobium, numerical solutions are presented and the different contributions to the electrostatic potential and the related charge distribution are discussed.Comment: 19 pages, 11 figure

    An evaluation of metal removal during wastewater treatment: The potential to achieve more stringent final effluent standards

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2011 Taylor & Francis.Metals are of particular importance in relation to water quality, and concern regarding the impact of these contaminants on biodiversity is being encapsulated within the latest water-related legislation such as the Water Framework Directive in Europe and criteria revisions to the Clean Water Act in the United States. This review undertakes an evaluation of the potential of 2-stage wastewater treatment consisting of primary sedimentation and biological treatment in the form of activated sludge processes, to meet more stringent discharge consents that are likely to be introduced as a consequence. The legislation, sources of metals, and mechanisms responsible for their removal are discussed, to elucidate possible pathways by which the performance of conventional processes may be optimized or enhanced. Improvements in effluent quality, achievable by reducing concentrations of suspended solids or biochemical oxygen demand, may also reduce metal concentrations although meeting possible requirements for the removal of copper my be challenging

    Black Holes at Future Colliders and Beyond: a Topical Review

    Full text link
    One of the most dramatic consequences of low-scale (~1 TeV) quantum gravity in models with large or warped extra dimension(s) is copious production of mini black holes at future colliders and in ultra-high-energy cosmic ray collisions. Hawking radiation of these black holes is expected to be constrained mainly to our three-dimensional world and results in rich phenomenology. In this topical review we discuss the current status of astrophysical observations of black holes and selected aspects of mini black hole phenomenology, such as production at colliders and in cosmic rays, black hole decay properties, Hawking radiation as a sensitive probe of the dimensionality of extra space, as well as an exciting possibility of finding new physics in the decays of black holes.Comment: 31 pages, 10 figures To appear in the Journal of Physics

    The calcium-Activated potassium channel KCa3.1 is an important modulator of hepatic injury

    Get PDF
    The calcium-Activated potassium channel KCa3.1 controls different cellular processes such as proliferation and volume homeostasis. We investigated the role of KCa3.1 in experimental and human liver fibrosis. KCa3.1 gene expression was investigated in healthy and injured human and rodent liver. Effect of genetic depletion and pharmacological inhibition of KCa3.1 was evaluated in mice during carbon tetrachloride induced hepatic fibrogenesis. Transcription, protein expression and localisation of KCa3.1 was analysed by reverse transcription polymerase chain reaction, Western blot and immunohistochemistry. Hemodynamic effects of KCa3.1 inhibition were investigated in bile duct-ligated and carbon tetrachloride intoxicated rats. In vitro experiments were performed in rat hepatic stellate cells and hepatocytes. KCa3.1 expression was increased in rodent and human liver fibrosis and was predominantly observed in the hepatocytes. Inhibition of KCa3.1 aggravated liver fibrosis during carbon tetrachloride challenge but did not change hemodynamic parameters in portal hypertensive rats. In vitro, KCa3.1 inhibition leads to increased hepatocyte apoptosis and DNA damage, whereas proliferation of hepatic stellate cells was stimulated by KCa3.1 inhibition. Our data identifies KCa3.1 channels as important modulators in hepatocellular homeostasis. In contrast to previous studies in vitro and other tissues this channel appears to be anti-fibrotic and protective during liver injury

    Measuring space-time variation of the fundamental constants with redshifted submillimetre transitions of neutral carbon

    Full text link
    We compare the redshifts of neutral carbon and carbon monoxide in the redshifted sources in which the fine structure transition of neutral carbon, [CI], has been detected, in order to measure space-time variation of the fundamental constants. Comparison with the CO rotational lines measures gives the same combination of constants obtained from the comparison fine structure line of singly ionised carbon, [CII]. However, neutral carbon has the distinct advantage that it may be spatially coincident with the carbon monoxide, whereas [CII] could be located in the diffuse medium between molecular clouds, and so any comparison with CO could be dominated by intrinsic velocity differences. Using [CI], we obtain a mean variation of dF/F = (-3.6 +/- 8.5) x 10^-5, over z = 2.3 - 4.1, for the eight [CI] systems, which degrades to (-1.5+/- 11) x 10^-5, over z = 2.3 - 6.4 when the two [CII] systems are included. That is, zero variation over look-back times of 10.8-12.8 Gyr. However, the latest optical results indicate a spatial variation in alpha, which describes a dipole and we see the same direction in dF/F. This trend is, however, due to a single source for which the [CI] spectrum is of poor quality. This also applies to one of the two [CII] spectra previously used to find a zero variation in alpha^2/mu. Quantifying this, we find an anti-correlation between |dF/F| and the quality of the carbon detection, as measured by the spectral resolution, indicating that the typical values of >50 km/s, used to obtain a detection, are too coarse to reliably measure changes in the constants. From the fluxes of the known z > 1 CO systems, we predict that current instruments are incapable of the sensitivities required to measure changes in the constants through the comparison of CO and carbon lines. We therefore discuss in detail the use of ALMA for such an undertaking ... ABRIDGEDComment: Accepted for publication in Section 3 - Cosmology (including clusters of galaxies) of Astronomy and Astrophysic

    Meson-exchange Model for πN\pi N scattering and γN>πN\gamma N -> \pi N reaction

    Full text link
    An effective Hamiltonian consisting of bare ΔπN\Delta \leftrightarrow\pi N, γN\gamma N vertex interactions and energy-independent meson-exchange πNπN,γN\pi N \leftrightarrow \pi N, \gamma N transition operators is derived by applying a unitary transformation to a model Lagrangian with N,Δ,πN,\Delta,\pi, ρ\rho, ω\omega, and γ\gamma fields. With appropraite phenomenological form factors and coupling constants for ρ\rho and Δ\Delta, the model can give a good description of πN\pi N scattering phase shifts up to the Δ\Delta excitation energy region. It is shown that the best reproduction of the recent LEGS data of the photon-asymmetry ratios in γpπ0p\gamma p \rightarrow \pi ^0 p reactions provides rather restricted constraints on the coupling strengths GEG_E of the electric E2E2 and GMG_M of the magnetic M1M1 transitions of the bare ΔγN\Delta \leftrightarrow \gamma N vertex and the less well-determined coupling constant gωNNg_{\omega NN} of ω\omega meson. Within the ranges that GM=1.9±0.05G_M = 1.9 \pm 0.05, GE=0.0±0.025G_E = 0.0 \pm 0.025, and 7gωNN10.57 \leq g_{\omega NN}\leq 10.5, the predicted differential cross sections and photon-asymmetry ratios are in an overall good agreement with the data of γpπ0p\gamma p \rightarrow \pi ^0 p, γpπ+n\gamma p \rightarrow \pi ^+ n, and γnπp\gamma n\rightarrow \pi ^- p reactions from 180 MeV to the Δ\Delta excitation region. The predicted M1+M_{1^+} and E1+E_{1^+} multipole amplitudes are also in good agreement with the empirical values determined by the amplitude analyses. The constructed effective Hamiltonian is free of the nucleon renormlization problem and hence is suitable for nuclear many-body calculations. We have also shown that the assumptions made in the KK-matrix method, commonly used in extracting empirically the γNΔ\gamma N \rightarrow \Delta transition amplitudes from the data, are consistent withComment: 49 pages + 23 Figures, Revte
    corecore