44 research outputs found

    Edaq530: a transparent, open-end and open-source measurement solution in natural science education

    Get PDF
    We present Edaq530, a low-cost, compact and easy-to-use digital measurement solution consisting of a thumb-sized USB-to-sensor interface and a measurement software. The solution is fully open-source, our aim being to provide a viable alternative to professional solutions. Our main focus in designing Edaq530 has been versatility and transparency. In this paper, we shall introduce the capabilities of Edaq530, complement it by showing a few sample experiments, and discuss the feedback we have received in the course of a teacher training workshop in which the participants received personal copies of Edaq530 and later made reports on how they could utilise Edaq530 in their teaching

    Mapping the Anthocyaninless (anl) Locus in Rapid-Cycling Brassica rapa (RBr) to Linkage Group R9

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anthocyanins are flavonoid pigments that are responsible for purple coloration in the stems and leaves of a variety of plant species. <it>Anthocyaninless </it>(<it>anl</it>) mutants of <it>Brassica rapa </it>fail to produce anthocyanin pigments. In rapid-cycling <it>Brassica rapa</it>, also known as Wisconsin Fast Plants, the anthocyaninless trait, also called non-purple stem, is widely used as a model recessive trait for teaching genetics. Although anthocyanin genes have been mapped in other plants such as <it>Arabidopsis thaliana</it>, the <it>anl </it>locus has not been mapped in any <it>Brassica </it>species.</p> <p>Results</p> <p>We tested primer pairs known to amplify microsatellites in <it>Brassicas </it>and identified 37 that amplified a product in rapid-cycling <it>Brassica rapa</it>. We then developed three-generation pedigrees to assess linkage between the microsatellite markers and <it>anl</it>. 22 of the markers that we tested were polymorphic in our crosses. Based on 177 F<sub>2 </sub>offspring, we identified three markers linked to <it>anl </it>with LOD scores ≥ 5.0, forming a linkage group spanning 46.9 cM. Because one of these markers has been assigned to a known <it>B. rapa </it>linkage group, we can now assign the <it>anl </it>locus to <it>B. rapa </it>linkage group R9.</p> <p>Conclusion</p> <p>This study is the first to identify the chromosomal location of an anthocyanin pigment gene among the <it>Brassicas</it>. It also connects a classical mutant frequently used in genetics education with molecular markers and a known chromosomal location.</p

    Transcriptome sequencing and microarray development for the Manila clam, Ruditapes philippinarum: genomic tools for environmental monitoring

    Get PDF
    Abstract Background The Manila clam, Ruditapes philippinarum, is one of the major aquaculture species in the world and a potential sentinel organism for monitoring the status of marine ecosystems. However, genomic resources for R. philippinarum are still extremely limited. Global analysis of gene expression profiles is increasingly used to evaluate the biological effects of various environmental stressors on aquatic animals under either artificial conditions or in the wild. Here, we report on the development of a transcriptomic platform for global gene expression profiling in the Manila clam. Results A normalized cDNA library representing a mixture of adult tissues was sequenced using a ultra high-throughput sequencing technology (Roche 454). A database consisting of 32,606 unique transcripts was constructed, 9,747 (30%) of which could be annotated by similarity. An oligo-DNA microarray platform was designed and applied to profile gene expression of digestive gland and gills. Functional annotation of differentially expressed genes between different tissues was performed by enrichment analysis. Expression of Natural Antisense Transcripts (NAT) analysis was also performed and bi-directional transcription appears a common phenomenon in the R. philippinarum transcriptome. A preliminary study on clam samples collected in a highly polluted area of the Venice Lagoon demonstrated the applicability of genomic tools to environmental monitoring. Conclusions The transcriptomic platform developed for the Manila clam confirmed the high level of reproducibility of current microarray technology. Next-generation sequencing provided a good representation of the clam transcriptome. Despite the known limitations in transcript annotation and sequence coverage for non model species, sufficient information was obtained to identify a large set of genes potentially involved in cellular response to environmental stress.This work was partially supported by a grant from European Union-funded Network of Excellence "Marine Genomics Europe". CS wishes to acknowledge additional funding from the Ministry of Education and Science (Spain) through grant AGL2007-60049. MM had a PhD scholarship from the University of Florence, Italy. RL was recipient of PhD fellowship SFRH/BD/30112/2006, from the Portuguese Science and Technology Foundation (FCT) and LC and RL acknowledge a grant from FCT project ISOPERK (PTDC/CVT/72083/2006).Peer Reviewe

    Psychoactive Pharmaceuticals Induce Fish Gene Expression Profiles Associated with Human Idiopathic Autism

    Get PDF
    Idiopathic autism, caused by genetic susceptibility interacting with unknown environmental triggers, has increased dramatically in the past 25 years. Identifying environmental triggers has been difficult due to poorly understood pathophysiology and subjective definitions of autism. The use of antidepressants by pregnant women has been associated with autism. These and other unmetabolized psychoactive pharmaceuticals (UPPs) have also been found in drinking water from surface sources, providing another possible exposure route and raising questions about human health consequences. Here, we examined gene expression patterns of fathead minnows treated with a mixture of three psychoactive pharmaceuticals (fluoxetine, venlafaxine & carbamazepine) in dosages intended to be similar to the highest observed conservative estimates of environmental concentrations. We conducted microarray experiments examining brain tissue of fish exposed to individual pharmaceuticals and a mixture of all three. We used gene-class analysis to test for enrichment of gene sets involved with ten human neurological disorders. Only sets associated with idiopathic autism were unambiguously enriched. We found that UPPs induce autism-like gene expression patterns in fish. Our findings suggest a new potential trigger for idiopathic autism in genetically susceptible individuals involving an overlooked source of environmental contamination

    Pre-conference field trip

    No full text
    1 page(s
    corecore