116 research outputs found

    Tauberian Results for Densities with Gaussian Tails

    Get PDF
    We study a class of probability densities with very thin upper tails. These densities generate exponential families which are asymptotically normal. Furthermore the class is closed under convolution. In this paper we shall be concerned with Abelian and strong Tauberian theorems for moment generating functions and Laplace transforms with respect to these densities. We obtain a duality relation between this class of densities and the associated class of moment generating functions which is closely related to the duality relation for convex function

    Densities with Gaussian Tails

    Get PDF
    Consider densities fi(t), for i = 1, ..., d, on the real line which have thin tails in the sense that, for each i, fi(t) ∼ γi(t)e−ψi(t), where γi behaves roughly like a constant and ψi is convex, C2, with ψ′ → ∞ and ψ″ > 0 and l/√ψ″ is self-neglecting. (The latter is an asymptotic variation condition.) Then the convolution is of the same form ft * ... *fd(t) ∼ γ(t)e − ψ(t) Formulae for γ, ψ are given in terms of the factor densities and involve the conjugate transform and infimal convolution of convexity theory. The derivations require embedding densities in exponential families and showing that the assumed form of the densities implies asymptotic normality of the exponential familie

    Heavy-tailed max-linear structural equation models in networks with hidden nodes

    Full text link
    Recursive max-linear vectors provide models for the causal dependence between large values of observed random variables as they are supported on directed acyclic graphs (DAGs). But the standard assumption that all nodes of such a DAG are observed is often unrealistic. We provide necessary and sufficient conditions that allow for a partially observed vector from a regularly varying model to be represented as a recursive max-linear (sub-)model. Our method relies on regular variation and the minimal representation of a recursive max-linear vector. Here the max-weighted paths of a DAG play an essential role. Results are based on a scaling technique and causal dependence relations between pairs of nodes. In certain cases our method can also detect the presence of hidden confounders. Under a two-step thresholding procedure, we show consistency and asymptotic normality of the estimators. Finally, we study our method by simulation, and apply it to nutrition intake data

    Smoothing of Transport Plans with Fixed Marginals and Rigorous Semiclassical Limit of the Hohenberg–Kohn Functional

    Get PDF
    We prove rigorously that the exact N-electron Hohenberg–Kohn density functional converges in the strongly interacting limit to the strictly correlated electrons (SCE) functional, and that the absolute value squared of the associated constrained search wavefunction tends weakly in the sense of probability measures to a minimizer of the multi-marginal optimal transport problem with Coulomb cost associated to the SCE functional. This extends our previous work for N = 2 (Cotar etal. in Commun Pure Appl Math 66:548–599, 2013). The correct limit problem has been derived in the physics literature by Seidl (Phys Rev A 60 4387–4395, 1999) and Seidl, Gorigiorgi and Savin (Phys Rev A 75:042511 1-12, 2007); in these papers the lack of a rigorous proofwas pointed out.We also give amathematical counterexample to this type of result, by replacing the constraint of given one-body density—an infinite dimensional quadratic expression in the wavefunction—by an infinite-dimensional quadratic expression in the wavefunction and its gradient. Connections with the Lawrentiev phenomenon in the calculus of variations are indicated

    Convergence to stable laws for multidimensional stochastic recursions: the case of regular matrices

    Full text link
    Given a sequence (Mn,Qn)n1(M_{n},Q_{n})_{n\ge 1} of i.i.d.\ random variables with generic copy (M,Q)GL(d,R)×Rd(M,Q) \in GL(d, \R) \times \R^d, we consider the random difference equation (RDE) Rn=MnRn1+Qn, R_{n}=M_{n}R_{n-1}+Q_{n}, n1n\ge 1, and assume the existence of κ>0\kappa >0 such that \lim_{n \to \infty}(\E{\norm{M_1 ... M_n}^\kappa})^{\frac{1}{n}} = 1 . We prove, under suitable assumptions, that the sequence Sn=R1+...+RnS_n = R_1 + ... + R_n, appropriately normalized, converges in law to a multidimensional stable distribution with index κ\kappa. As a by-product, we show that the unique stationary solution RR of the RDE is regularly varying with index κ\kappa, and give a precise description of its tail measure. This extends the prior work http://arxiv.org/abs/1009.1728v3 .Comment: 15 page

    Tail probabilities of St. Petersburg sums, trimmed sums, and their limit

    Get PDF
    We provide exact asymptotics for the tail probabilities P{Sn,r>x}\mathbb{P} \{S_{n,r} > x\} as xx \to \infty, for fix nn, where Sn,rS_{n,r} is the rr-trimmed partial sum of i.i.d. St. Petersburg random variables. In particular, we prove that although the St. Petersburg distribution is only O-subexponential, the subexponential property almost holds. We also determine the exact tail behavior of the rr-trimmed limits.Comment: 24 pages, 2 figure

    Alternative approach to the optimality of the threshold strategy for spectrally negative Levy processes

    Full text link
    Consider the optimal dividend problem for an insurance company whose uncontrolled surplus precess evolves as a spectrally negative Levy process. We assume that dividends are paid to the shareholders according to admissible strategies whose dividend rate is bounded by a constant. The objective is to find a dividend policy so as to maximize the expected discounted value of dividends which are paid to the shareholders until the company is ruined. Kyprianou, Loeffen and Perez [28] have shown that a refraction strategy (also called threshold strategy) forms an optimal strategy under the condition that the Levy measure has a completely monotone density. In this paper, we propose an alternative approach to this optimal problem.Comment: 16 page

    A HILL TYPE ESTIMATOR OF THE WEIBULL TAIL-COEFFICIENT

    Get PDF
    International audienceWe present a new estimator of the Weibull tail-coefficient. The Weibull tail-coefficient is defined as the regular variation coefficient of the inverse cumulative hazard function. Our estimator is based on the log-spacings of the upper order statistics. Therefore, it is very similar to the Hill estimator for the extreme value index. We prove the weak consistency and the asymptotic normality of our estimator. Its asymptotic as well as its finite sample performances are compared to classical ones
    corecore