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ABSTRACT

We study a class of probability densities with very thin upper tails. These densities generate exponential
families which are asymptotically normal. Furthermore the class is closed under convolution. In this paper
we shall be concerned with Abelian and strong Tauberian theorems for moment generating functions and
Laplace transforms with respect to these densities. We obtain a duality relation between this class of
densities and the associated class of moment generating functions which is closely related to the duality
relation for convex functions.

0. Introduction

Abelian and Tauberian results relate the asymptotic behaviour of a function to the
asymptotic behaviour of the transformed function. In this paper we consider an
integrable nonnegative function/on the real line with a very thin upper tail and the
transform

f (0.1)

We are interested in deriving information about the upper tail of/from the upper tail
of the transform/. Note that/( —T) is the two-sided Laplace transform of the function
/. The most famous Tauberian result for Laplace-transforms goes back to Karamata
(see, for example, [12]) and links regular variation of/with that of/; we refer to
Feller's lucid exposition (see, for example, [9, Chapter 13]) for details. Here we assume
not regular variation but rather that / has a very thin tail in the sense that

0 t>t0, (0.2)

j{t)eni >0 as/ >oo, Vw^l. (0.3)

This ensures that fix) is defined for all x ^ 0.
An example of a function with a very thin tail i s / = e~v where ^ is a convex

function whose slope tends to infinity as /-• oo. We are interested in the situation
where y/ is asymptotically parabolic. Intuitively this means that in the neighbourhood
of + oo one can approximate y/ locally by a second degree polynomial. This is made
precise in the following definitions.

Recall that a function s: IR -> (0, oo) is self-neglecting or Beurling slowly varying if

s(t -\- xs(t))
——f-—— • 1 as / • oo, uniformly on bounded x-intervals, (0.4)

5(0
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or equivalently, if it is asymptotic to a function which has a continuous derivative
which vanishes in +00. Note that this implies that s(t) = o(t), as t-*co. See
[5, Section 2.11] for further information.

DEFINITION. A function y/: R -> U is asymptotically parabolic if it has a
continuous strictly positive second derivative y/" such that the function s = 1/vV" is
self-neglecting. The function s is called the scale function of y/.

The following result gives an alternative definition of'asymptotically parabolic'.
It reflects the more intuitive description above. We write f~g if _/(/)/^(/) —> 1, as
f-> 00.

THEOREM A. Suppose that y/ is asymptotically parabolic with scale function s.
Then there exist affine functions At{x) = atx + bt such that

y/(t-\-xs(t)) — At(x) •fA"2 as l *°°' uniformly on boundedx-intervals. (0.5)

Conversely ify/ is measurable and if there exist a positive function s and affine functions
At such that (0.5) holds uniformly on [0,q] for some q>0 then there exists an

asymptotically parabolic function y/0 such that y/0(t) — y/(t) -> 0 and y/'o(t)~1'2 ~ s(t) as

t -> 00, so the two scale functions are asymptotically equivalent.

Proof. For the first part use bt = y/(t), at = y/'(t) s(t) and apply Taylor's formula
together with the fact that y/"(t)~1/2 is self-neglecting. The second part is contained in
a forthcoming paper of the first author [1] and needs rather lengthy constructions.

Examples are y/(t) = V with p > 1, and y/(t) = eM with a > 0.
In order to illustrate the kind of results we are interested in, we formulate the

Abelian theorem which describes the asymptotic behaviour of the transform fix) for
T-> 00. This Abelian result which is due to Feigin and Yashchin, see [8], will be
discussed in greater detail in Section 1.

THEOREM B. Let / ^ 0 be an integrable function which satisfies (0.2) and (0.3).
Define f by (0.1). Iff[t) ~ e~v{l) with y/ asymptotically parabolic, then fix) ~ ^<T) with
<p asymptotically parabolic. Moreover,

(0-6)

where s = (y/")~112 is the scale function of yj and x is the slope of y/ at t (that is,
x = yi\t)).

In particular if/ is the Gaussian density nfl o then r = (t—^)/a2 and s(i) = a. In
this case relation (0.6) becomes the identity

The relation (0.6) is an application of Laplace's principle for computing the
integral of a unimodal positive function. The definition of an asymptotically
parabolic function is exactly the condition which allows the principle to work.

One can describe the relation between the functions y/ and 0 in the exponents of
Theorem B more precisely. Therefore recall that the Legendre transform or convex
conjugate of the convex function y/ is the function y/*(x) = supt{xt — y/(t)}. If y/ has a
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continuous strictly positive second derivative the supremum above is achieved in the
uniquely determined point t satisfying x = y/'(t). It is not difficult to see (compare [3,
Theorem 5.3]) that y/* is asymptotically parabolic with scale function s* = 1/vV*"
and that / and x are conjugate variables in the sense that

T = y/\t) and / = y/*'(x). (0.7)

Then the scale functions are related by

s(t) = l/s*(x) (0.8)

and we have the relation tx = y/(t) + y/*(x).
In Section 1 we shall explain in more detail the essentially geometric argument

which yields the asymptotic expression (0.6) for the moment generating function/in
terms of the convex conjugate of if/ and its second derivative for a more general class
of densities. However the main purpose of this paper is to investigate the following
question.

Given an integrable non-negative function / whose moment generating function
/ i s defined in a neighbourhood of +oo, and satisfies f(x) ~ e*w, as T-+ OO, with <f)
asymptotically parabolic, what extra Tauberian conditions will ensure that
j{t) ~ e"1"'0, as t -* oo, with if/ asymptotically parabolic? In each of the Sections 2 to
5 we shall discuss different approaches.

The results are related to Tauberian theorems for Laplace transforms of rapidly
decreasing functions. Usually weak Tauberian results are given in this context,
relating log/and log/only, see [2, 6, 13, 14], whereas we discuss strong Tauberian
conclusions relating/and/. Results of this kind are of interest in Probability Theory
for questions where thin tails of distribution functions are crucial as, for instance, in
exponential inequalities, large deviations (see, for example, Feller's book [9] or [11])
and in the stochastic approach to heat equations (see [10, 20]), but also in Analysis
in, for example, Summability Theory (see [19]). For our investigations one starting
point was a paper of Feigin and Yashchin [8], who derive a strong Tauberian theorem
for the Laplace transform of probability distributions and densities. As a special case
they consider densities with Gaussian tails. In the present paper we treat this
important case in more detail. The Abelian part was studied in [3], which was the
second starting point of this paper.

1. Basic tools and the Abelian result

The Introduction contained definitions and two basic results. In the present
section we present the tools which we shall use in the ensuing sections to analyse the
relation between the asymptotic behaviour of the function / and its transform /
introduced in (0.1). We shall introduce the probabilistic setting of an exponential
family of distribution functions. This probabilistic approach is suggested by the
positivity of the function/ It will be validated by the crucial role which the Gaussian
probability distribution plays in our analysis. As we shall see at the end of this section
Tauberian conditions for (0.6) can be regarded as conditions which upgrade weak
convergence of distribution functions to locally uniform convergence of densities.

But at first we shall use the exponential family to sketch a proof of a more general
form of the Abelian theorem in the Introduction. The exponential family will allow
us to reformulate the Abelian result in terms of convergence of densities.
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Consider a probability density f on M which satisfies (0.2) and (0.3). Now we
introduce the exponential family of densities fx given by

fT(t) = eTtJ{t)/ex(T) for te U, (1.1)

where we choose x s u c n t h a t / is a density again, that is, we choose

The asymptotic behaviour of/r as x -> oo yields an elegant proof for the Abelian result
(0.6) when/is a logconcave density.

Assume that j\t) = e~^(t) where y/ is convex with a continuous strictly positive
second derivative. The density / has a similar form with y/ replaced by
y/r(u) = y/(u) — TU + C where c = #(T). Note that y/" = yj". Since we are interested in the
behaviour of y/x(u) as a function of u, the value c = #(T) is not important for the
following, so we do not need to know the function / (T) explicitly. Under rather weak
assumptions on yi we can approximate the function y/x(u) near its maximum u = / by
the parabola y/x(u) = ly/"(t)(u-t)2 + b. Observe that / and b depend on r. Since / and
T are conjugate variables related by (0.7) we can choose t as our independent variable.
If this parabolic approximation is valid on w-intervals of length cy/"(t)~1/2 then we have
convergence to the standard normal density n0 J(M) = (2/c)~1/2 exp (— w2/2). The
obvious normalization by a translation over t and a scaling by s{t) = \/\/y/"(t) gives

f%u): = s{t)fx{t + us(t)) > n0 x(«) as x > co.

Convexity takes care of all convergence problems and - as it is often the case in
probability theory - the constants b and c are taken care of automatically.
Furthermore we have uniform convergence on U by convexity. Indeed for any M > 0
we have

(f°x(u)-n0l(u))eMlul >0 asr >oo, uniformly in weU. (1.2)

See [3, Proposition 6.5] for details.
Using the convergence fx(u) -> n0A(u) in u = 0 and with s(t) = (y/"(t))~1/z we find

that
/(T))=/?(0) >y/{\/2n).

Now observe that exp(^(i)) =fix)- T n e n t u e identity tx = y/{t)-\-y/*(T) (see below
(0.8)) yields (0.6) in a more specific way,

where s*(r) = \/s(t) = \/y/'\y/'^{x)) is the scale function of y/*, see (0.8).
An essentially geometric argument has yielded a non-trivial asymptotic expression

for the moment generating function/in terms of the convex conjugate of the function
yj = — log/ and the second derivative of y/. The condition which ensures that the
argument above is valid is both intuitive and simple. The function s= \/\/y/"
should be self-neglecting and hence y/ should be asymptotically parabolic with scale
function 5.

The derivation above is a mix of potent ingredients: exponential families,
asymptotic normality, the Legendre transform, self-neglecting functions. The active
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part is Laplace's principle for the evaluation of the integral of a unimodal positive
function g(u) = e-v<">+™. The recipe is well known. We now formulate the result in
purely analytic terms after slightly generalizing our situation.

DEFINITION. Let y/ be asymptotically parabolic with scale function s. A function
/ J : R - > ( 0 , oo) is flat for y/ if

T-̂ T >\ as t • oo, uniformly on bounded A: intervals. (1.3)

REMARK 1.1. A function h which is flat for y/ behaves like a positive constant in
asymptotic expressions involving e~v or ev. The notation of flat functions is
convenient but not indispensable. If h is flat for y/ then there exists an asymptotically
parabolic function y/0 with scale function so(t) ~ s(t) as / -> oo, such that
h{t)e-vit) ~ e-*°w as /-> oo (see [3, Proposition 5.10]).

Finally observe (see [3, Proposition 5.6]) that the positive function h is flat for y/
if and only if the function h* is flat for the convex conjugate y/*, where h and h* are
related by the change of variables (0.7), that is,

h(t) = h*(z). (1.4)

Examples of flat functions for y/ are s(t), y/"(t), t and constants a. Sums and
products of flat functions are again flat.

Summarizing we obtain the following result; a detailed proof of which can be
found in [3].

THEOREM C. Let / ^ 0 be an integrable function on U, which satisfies (0.2) and
(0.3). IfJ{t) ~ h{t)e~v{t\ where y/ is asymptotically parabolic and h is flat for y/, then
f\z) ~ /3(z) e^*™, where y/* is the convex conjugate of y/, /? is flat for y/* and satisfies

(1.5)

with s the scale function of y/ and x and t conjugate variables related by (0.7).

EXAMPLE. In general an explicit expression for the Legendre transform of a
convex function does not exist. However, if y/{t) = (at)p/p with a > 0 and p > 1 then
the Legendre transform </> = y/* has the form {(x.x)Q/q with a = I/a and \/q+\/p = 1.
Moreover the conjugate variables z = y/'{t) = aptp~1 and / are related by (at)p = (<xz)Q

and the scale functions s of y/ and a of $ are given by

sit) = y/{{q-\)/ap)t^'\ a{z) =

hence /(r)
The probabilistic setup was helpful for deriving the Abelian conclusion and it will

be even more helpful for deriving the Tauberian results. In the following we present
the details.

Consider a random variable U with distribution function F. We shall again
consider the exponential family and now derive asymptotic normality from the tail
behaviour of the transform of the distribution function F.

DEFINITION. The distribution function F has a very thin tail if the function 1 — F
satisfies (0.2) and (0.3).
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The assumption that F has a very thin tail will be made throughout the paper. It
implies that the moment generating function f\z) exists for r ^ 0. Indeed conditions
(0.2) and (0.3) on 1 —Fare equivalent to the conditions (0.3) and (0.2) on the function
1/ / The assumption of a very thin tail is not strictly necessary. It is made for the sake
of simplicity. The theory (with slight modifications) also holds if the upper endpoint
of the distribution function F or of the moment generating function / is finite,
see [3, 8].

Given the random variable U with distribution function F we define the
exponential family of random variables Ux for T ^ 0, with distribution functions

P
Fx(t)= ervdF(v)/exM forfeIR, (1.6)

J-oo

where x = log/ is the so-called cumulant generating function of F. The distribution
functions Fx are also collectively called the Esscher transform of F. It plays a
fundamental role in large deviation theory, see, for example, Feller [9]. The function
X(z) is analytic on 9?z > 0 and the cumulant generating function of UT is given by
XT(Z) = X(Z + T)— X(T)- The expectation and variance of the random variable Ur are
obtained by differentiation:

M(T) = SUX = / ( T ) , <T2(T) = var Ux = x*(z). (1.7)

The normalized random variables

" ? - ^ OB)

have distribution function F* with density / * if Fis absolutely continuous, moment
generating function / * and cumulant generating function

for some 6 = 0(w, T) with |0| < 1.
At this point we may apply the classical theory of weak convergence for

probability measures and their moment generating functions. From (1.9) it is
apparent that/f(w) -> e™2'2 uniformly on bounded w-intervals in U if the function \/o
is self-neglecting, and then UT is asymptotically normal as T-> OO.

THEOREM 1.2. Suppose that the distribution function F has a very thin tail and the
moment generating function/has the form f~ fie*, where 0 is asymptotically parabolic
and fi is flat for <f>. Let No l denote the standard normal distribution function. Then the
distribution functions of the normalized random variables U* in (1.8) satisfy

w
F* >N0l asT >oo. (1.10)

Proof. By Remark 1.1 we have fie* ~ e*°, where 0O is asymptotically parabolic
with scale function sQ ~ s. Set U°T = (UT—fi0)/u0 with //0(T) = <f>'0(z) and
CTQ(T) = 0Q(T) = 5O2(T). Theorem A yields

(f)Jj-\-uso) — Ax(u) y\u2 as T ^oo, uniformly on bounded w-intervals
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for AT(u) = 0O 4- tyu0 s0, and this relation also holds for x s m c e X~ </>o^®- The
argument above applies. The moment generating function of £/° converges to that
of the standard Gauss distribution. This gives U°T-^ NQl. Convergence of the
moment generating function entails convergence of all moments. Therefore we may
use the first two moments to normalize, obtaining (1.10).

REMARK 1.3. (a) The distribution F may be discrete, such as, for instance, the
Poisson distribution, or may be absolutely continuous, such as, for example,
J{t) = ce~tV for / ^ 0 (and p > 1) in Theorem 1.2.

(b) If F has a very thin tail, then UT -^ oo, that is, P(UX ^ M) -*• 0 as z -> oo for
all M > 0. If (1.10) holds then ^(T) -> oo and CT(T)///(T) -> 0, as z -> oo.

To see this let zn -*• oo and assume that fi(zn) ^ Ma(zn). Then
FTn(n(zn)-Mo(zn)) ^ FTn(0). The left-hand side converges by (1.10) to N01(-M) > 0
whereas the right-hand side is P(UT < 0) -> 0 as n -*• oo.

REMARK 1.4. From a probabilistic point of view the derivation of the result
above can be generalized to the following problem: normalize the family of random
variables {UT, z ^ 0} suitably. What are the possible limit distributions? In our case
we ended with the normal distribution. Assume now that the random variables
U** = (a — T) UT for ie(0,a) have densities f** which converge as z -* a, that is,

>f**(u).

Putting 1/(OC-T) = d; we find that^M)eau7C(^) -^ euf**(u) as T -»a, where the exact
form of C is not relevant. This implies that f(£u)eaui is regularly varying and
euf**(u) = cup~x with some (5 > 0 (see, for example, [5]). Hence the convergence is
uniform on compact subsets and/**(«) = e~uup~x/F(/?) for u > 0, that is, is a Gamma-
density. This is the link between Karamata's theory of regular variation and the
theory of Gaussian tails presented in this paper.

It is simple to check that the gamma distributions on (0, oo) or on ( —oo,0)
generate an exponential family of gamma distributions with constant shape parameter
/? > 0; also the Gauss distributions generate an exponential family of Gauss
distributions. It is known (see, for example, [15, p. 36]) that these are the only
instances of exponential group families.

We shall now investigate the asymptotic normality of the exponential family Fx

from the point of view of densities. Let/T* denote the density of U* as defined in (1.8),
that i s , / » = o

DEFINITION. A probability density/as a Gaussian tail if it satisfies (0.2) and (0.3)
and if 7(0 ~ e~¥(t) with some asymptotically parabolic-function y/.

The notation becomes clear from the next result.
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PROPOSITION 1.5. If the probability density f has a Gaussian tail then

/ f (w) > n0 x(u) as T > oo, locally uniformly in u, (1.11)

where f* is the density of the normalized random variables U* in (1.8).
Conversely suppose that the distribution function F has a very thin tail and is

absolutely continuous. If there exist norming functions a(x) > 0 and b(z) such that the
densities of (UT — b(r))/a(x) converge to the standard Gaussian density uniformly on
bounded u-intervals, then f has a Gaussian tail.

Proof. We have sketched the proof for the first statement above; for full details
see [3]. The converse conclusion is based on Theorem A. The uniform convergence on
bounded ^-intervals,

af{b + au) exp {{b + au) r - / ( T ) ) • <?"2/2/ \/(2n) as T > oo,

gives the relation <p(b(T) + a(r) u) — (q(r)+p(z)u) -* \u2 for the logarithms. Note that b
tends to infinity by Remark 1.3(b). If b is continuous we may apply Theorem A. We
choose b(x) to be the median of UT. Then b is strictly increasing. Let tn -*• oo; we can
choose in so that FT (tn) = | . (Apply the Mean Value Theorem to the continuous
function e^(r) $'_»„ ezt"dF(u).) This implies that / T J7J ~ \/\/(2n)a(Tn) > 0. Hence
(0.2) holds on a neighbourhood of +oo. This makes b eventually continuous.
Theorem A now implies that / ~ e"^, where 0O is asymptotically parabolic. In
particular 0O is convex and the limit 0o(°°) ^ °° exists. Since the distribution function
has a very thin tail this limit is infinite and/satisfies (0.3).

REMARK 1.6. (a) I f /has a Gaussian tail, then for any M > 0 we have

-"o.iO)!^""1 >0 a s r -^oo , uniformly in ue U. (1.12)

See (1.2) above and [3, Proposition 6.5].
(b) In particular formula (1.11) gives a tool for relating the asymptotic behaviour

o f / a n d / namely, putting u = 0 we obtain

A ^ as r >oo, (1.13)

where ;/(r) = / ' ( T ) . NOW we again have a formula relating the asymptotics o f / a n d /

REMARK 1.7. If F is a distribution function with 1 -F(t) ~ e"^0, and y is
asymptotically parabolic, investigating the right tail of F, we have by partial
integration

f(x) = x[CO el\\-F{t))dt
J —oo

and we would consider the density

with expectation / / ( T ) - 1 / T and variance CT2(T)+1/T2 (compare [8]) and similar
considerations would apply.

We now return to the question posed at the end of the Introduction. Start with
an integrable function/^ 0 on U and assume that the transform/defined in (0.1) has
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the f o r m / ~ fie*, where 0 is asymptotically parabolic and /? is flat for <fi. Also assume
that 1//satisfies (0.2) and (0.3). What extra (Tauberian) condition will ensure that the
source function / satisfies (0.2) and (0.3) and has the form / ~ e~¥, where y/ is
asymptotically parabolic?

On scaling by a suitable function we may assume tha t / i s a probability density.
The conditions on/imply that the distribution function Fhas a very thin tail, and by
Theorem 1.2 that the associated exponential family UT is asymptotically normal in the
sense of (1.10). What additional conditions will ensure convergence of the densities
(uniformly on bounded intervals)? By Proposition 1.5 such a condition ensures that
/ h a s a Gaussian tail in the sense that (0.2) and (0.3) hold and t h a t / ~ e~v for some
asymptotically parabolic function y/. This results in the following important
observation: any condition which upgrades (1.10) to convergence of densities
automatically is a Tauberian condition for the Theorems B and C.

2. Convexity

In the theory of regular variation, monotonicity is used as a Tauberian condition.
In our situation convexity assumptions can be applied. The following result is
essentially due to Feigin and Yashchin [8].

THEOREM D. Let the distribution function F have a very thin tail, that is, 1 — F
satisfies (0.2) and (0.3), and suppose that the cumulant generating function is
asymptotically parabolic. If F has a density f which is logconcave on a neighbourhood
of infinity, then f has a Gaussian tail.

The arguments of Section 1 allow us to reduce Theorem D to a simple result on
logconcave densities. Since we could not find it in the literature we provide a proof.
Compare also [3; 8; 17, Theorem 25.7].

LEMMA 2.1. Consider a sequence of distribution functions (Fn)neN which have
logconcave densities (fn)neN. If Fn -^ NQ 15 then sup^ \fn(x)-n0 ^x)| eMW -• 0 as w -• oo
for any M > 0.

Proof. Write fn(x) = e~¥n(x) for XGU, with convex functions y/n(x) ^ oo. Since
Fn-+NQl, the sequence y/n(x) has to be bounded from below and above for any
fixed x (otherwise limn_ x Fn(x) would have a jump or be zero below a certain point).
By Helly's selection theorem (see, for example, [9]), which applies also to convex
functions, we find a subsequence such that yin (x) -> y/(x) where yi is convex and
continuous, and so the convergence is uniform on compact subsets. Then a Standard
argument shows that the whole sequence must converge to y/(x) and that exp (— y/(x))
is nol{x). Since the one-sided derivatives of y/n(x) exist and converge, we get
eventually that y/n(x) ^ Mx — c for any large M with suitable c = cM uniformly in x
by convexity. This yields the desired result.

We shall now weaken the geometric Tauberian condition in Theorem D to obtain
a necessary and sufficient condition. This condition will be weakened further in (4.5)
below.
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THEOREM 2.2. Let the distribution function F have a very thin tail and a density f
and assume that the exponential family (UT) is asymptotically normal, that is, (1.10)
holds. Then f has a Gaussian tail if and only iffis strictly positive on a neighbourhood
of + oo and

ftyflt + a)
limsupsup sup A ' ^ ; <S1. (2.1)

Proof By Remark 1.3 one may choose r(z) -* oo so that
t(z) = fi{x) — r(r) a(z) -* oo for T-+OO (/J. and a are defined in (1.7)). Define the
norming transformations AT(u) = ^i(z) + a(z)u. If Fx is the distribution function of UT,
then Fx(Ax(u)) = F*{u) is the distribution function of the normalized variables U*
having density f*(u).

Reformulate (2.1) as follows: for any e > 0 there exists t0 > 0 such that

0 ^ log/+ y/t^e on [t, oo) for t ^ t0,

where y/t is the convex hull of the function which is infinite on ( — co,t) and equals
— log/on [/, oo). Now introduce the density

gr(x) = cre-^ l[ttao)(x) with / = t(z) = //(T)-r(T)a(T).

Here cT > 0 is a norming constant. The corresponding distribution function GT

satisfies GT(ju(z) + ua{z)) -> 7V0 x(w), since r(z) -• oo. This also implies that cz -> 1. Then
we conclude by Theorem E above that a(z)gr(jt(z) + ua(z)) -• nQ x(u) uniformly on U.
Hence f*(u) -* «0.i(") uniformly on any half line [-M, oo), which means that /has a
Gaussian tail. For the converse conclusion use the fact that - l o g / ~ y/, with y
asymptotically parabolic, SO that, in particular, if/ is convex, and this yields (2.1).

3. Convergence in one point

As before we assume that the distribution function Fhas a density/and that the
normalized random variables U* in (1.8) with densities/? converge in distribution to
No v Here we shall prove the following: if/j*(tf) converges in one point aeU for
r-+ oo then/has a Gaussian tail.

The convexity condition of the previous section has a surprising consequence.
Convexity is a local property. In order to ensure that a function is convex it suffices
to check convexity on a sequence of overlapping intervals which cover U. The same
holds for asymptotic convexity provided that the intersection intervals are sufficiently
long to establish true convexity. This leads to the following result.

PROPOSITION 3.1. Suppose that the distribution function F has a very thin tail and
a bounded density f and let (1.10) hold. If there is an interval (a,b) such that

/?(") >"o,i(w) forz • o o *

uniformly for u e (a, b), then f has a Gaussian tail.
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Note that we do not assume convergence in any point x outside the interval (a, b)
in Proposition 3.1. We shall now sharpen the result by shrinking the interval {a, b) to
a single point.

For notational convenience we introduce two families of operators. If one writes
the exponential family of distributions FT for r ^ 0 as Fx = SrF, then it is obvious that
the operators Sx for T ^ 0 form a semigroup (on the set of distribution functions with
very thin tail), that is, ST(SPF) = Sr+PF. Since we often consider the normalized
distribution functions F* it is convenient to introduce a second family of operators
T for T ^ 0, by setting TF = F*. Define //(T) and O(T) by (1.7). Then

since for the associated random variables

TTU=T»{{UX-H(T))/G{T))

= (Ur+p/a(T)-fi(z+p/a(r))/a(T+p/<j{T))

observing that

E((Ur-fir)Mr))p = X*XP) = (

Var ( (£ / T - /0Mr) ) p = <72

Furthermore we need the following result from Analysis.

LEMMA 3.2. Let (/n)n6N be a sequence of functions on U and assume that the
sequence (fn(xn))neN converges whenever the sequence (xn)neN converges. Then the
sequence (/n)n e N has a continuous limit and convergence is uniform on compact subsets
ofU.

Proof. Pointwise convergence of (/n) to a limit function/follows from the choice
(xn) = (x) for arbitrary x e IR. Furthermore if (xn) -*• x then we have/n(xn) ->/(x) since
the sequence (yn) defined by yn = xn for odd n and yn = x for even n converges to x
again. Now assume that the limit function is not continuous, that is, there exist xe U,
£ > 0 and a sequence (xn) -> x such that \f[xn) —f{x)\ > e. Define inductively

xn = xx for 1 ̂  n ̂  «15 where nx is defined such that \fn{x^) —J{x^\ ^ |e, V« ̂  nx\

xn = x2 for nx ^ n < n2, where «2 ^ «x is defined such that

etc.
Then we have (xn) -> x but \fnk(xnk) —f{x)\ ^ |e, contradicting our assumption.
Now assume that the convergence is not uniform on a compact set K. Then there

exist some e > 0 and a sequence (xn)e A" such that \fn(xn) — J[xn)\ ^ e. Without loss of
generality we may assume that (xn) converges to some xeK. By our assumption and
the continuity o f / w e end with the following contradiction,

6 ^ IAW-/WI ̂  ifnM-M + m-AxJ • ( ) .
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We can now prove the main result of this section.

THEOREM 3.3. Suppose that the distribution function F has a very thin tail and
density f. Assume furthermore that the cumulant generating function is asymptotically
parabolic. If there exist constants a, beU such that f*(a) -> b as r -> oo, then f has a
Gaussian tail.

Proof. Let rn -> oo and let xn denote the cumulant generating function of/n :=f*.
As in (1.9) *M(T) -> \x2 and fl*) -* 1 • Let cn -»• c e U. Then

Gna) = eA"fn(xn)

with fin = x'n(cj and a\ = x"n{cn). Now cn -> c implies that nn^c, a2
n->\ and

e-xn(cn) __> e-e /2 p o r a n y s e q u e n c e Yn _> x o n e c a n choose cn -*• c so that ftn + ona = xn

by continuity of /„ and /^. Hence c = x —a and v4w -* ca + \c2 = ^x2 —\a2. The left-
hand side gives rr»+c«/CT«/(a) -+ 6, yielding that /„(*„) -»• be**'2 e~xi/2. By Lemma 3.2
convergence is uniform on bounded intervals with limit function h(x) = bea*/2e~x2/2.
Observing that the cumulant generating function is asymptotically parabolic we find
that U* -> Â o ! and therefrom we obtain that h is a density and h = n0 v

4. Conditions on the oscillation

We begin with some simple observations about asymptotic equality for moment
generating functions. Suppose that the distribution function Fhas a very thin tail. Let
G be tail equivalent to F, that is, 1 —F(t) ~ 1 — G(t) as t -*• oo. Then G also has a very
thin tail and the moment generating functions / and g are also asymptotically
equivalent.

Now consider the function fie* where (j> is asymptotically parabolic and fi is flat for
(j>. This function need not be the moment generating function of a probability
measure. However (see below) there always exists a distribution function G with
moment generating function g ~ fie*, and we may even choose G to be absolutely
continuous with a bounded and continuous density g with a Gaussian tail. If F is
another distribution function with moment generating function f ~ fie* then by
Theorem 1.2 both exponential families Fr and Gr are asymptotically normal with the
same norming constants. If the distribution function Fhas a density/this allows us
to formulate a Tauberian condition: the density/has a Gaussian tail if and only if
/(/) ~ g(t) as / -• oo. In this section we shall work out these ideas in greater detail.

Before doing so let us have another look at the asymptotic relations introduced
above,

A
Neither of the two implications can be reversed. For the first one this is obvious, for
the second one choose F to be the Poisson-distribution. The cumulant generating
function X(eT — 1) is asymptotically parabolic. By the arguments above there exists a
density g with a Gaussian tail such that g ~ / Now (1 — F(n —))/(1 — F(n)) ~ n/X -> oo
and hence F cannot be tail-equivalent to G. The symmetry between the asymptotic
behaviour in the source space and the transform space which holds in the theory of
regular variation is absent in the theory of Gaussian tails.
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LEMMA 4.1. Let (Fn)neN be a sequence of absolutely continuous distribution

functions with densities (fn)neN and suppose that Fn ^ No x as n -*• oo. Then we have

dx •w — v as n •oo, for any fixed v < w. (4.1)
v "0,lW

Proof. The function ltl) w]/n0 : is bounded and almost everywhere continuous
with respect to Lebesgue measure or the Gaussian measure. Hence

(see [7, Proposition 8.12]).

PROPOSITION 4.2. Let the distribution function F have a very thin tail and density
f and suppose that the cumulant generating function x is asymptotically parabolic. Then
for any —co<v<w<oo we have

rt+ws(t)

V(2n)\ f{x)exHx)dx >w-v as t • o o , (4.2)
JJ t+vs(t)

where %* is the Legendre transform of / and s the scale function of /*•

Proof. Choose a logconcave density g(t) ~ (\/(s(t) V(2n))) e~x*(t). This is possible
since s is flat for %* by Remark 1.1. The density g has a Gaussian tail and x** — X
implies that g ~ / b y Theorem C in Section 1. Use the norming constants /J. = / and
a = \Jx" to normalize the exponential family Fx generated by the density / and the
exponential family Gr generated by g. Then gf -> n0 1 uniformly on U (see Theorem
C and (1.11)), and we obtain by Lemma 4.1

^Jw-v

We may delete the factor £(T)/ / (T) which tends to 1. Introduce the conjugate variable
/ = X'{T) = //(T), see (0.7). Then s(i) — O(T) by (0.8). Since the function s is self-
neglecting we have s(x) ~ s(t) for x = t + us(t) uniformly in v ^ u ^ w, and hence we
may replace the denominator g(x) a{x) by (\/-\/(2n))e~x*(x). This gives (4.2).

REMARK 4.3. If fix) ~ j9(T)^<r> with </> asymptotically parabolic and /? flat for 0
one obtains a similar relation:

\/(2n) [t+ws{t)

i f[x)el^*{x)dx-*w — v a s / •oo foranyy<w, (4.3)b{t) t+vs(t)

where s is the scale function of the Legendre transform 0* and b(t) = f${x) with
t = (f>'{x) and T conjugate variables (see (0.7)).

Now we come to our main results in this section, which are related to results
in [19].
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THEOREM 4.4. Let the distribution function F have a very thin tail and density f and
assume that the moment generating function satisfies fix) ~ ft(x)e^{T) as x -*• oo, with 0
asymptotically parabolic and ft flat for 0. Write s for the scale function of the Legendre
transform 0* o/0 and set b(t) = ft(x) with t = 0'(f) and x conjugate variables {see (0.7)).
The following are equivalent:

(1) the density f has a Gaussian tail;
(2) the function h(t) =f{t)er(t) is flat for 0*/

(3) At)
s(t)V(2n)

Proof. (1) => (3) Apply Theorem C and use (0.7) and (0.8).
(3) => (2) Use that s and b are flat for 0* (see [3, Proposition 5.6]).
(3) => (1) The relat ion^) ~ h(t) e~**(t) and Theorem C, together with Proposition

1.5, imply tha t /has a Gaussian tail.
(2) => (3) Since h is flat for 0* and s is self-neglecting we obtain with Remark 4.3

(4.4)

(\+o(\))
w~v = ^ITTT1 ^ ^ A*) e^ dx

0(0

EXAMPLE. Continuing the example below Theorem C we now assume that the
moment generating function has the form

AT) ~ P(T) e^\ 0(T) = (oLty/q, ftr) = cQ rc> exp (c2 x \

with 0 as above and c0 > 0. Then ft is flat for 0 if oft'/ft -* 0 and this will hold if 6 < | .
By Theorem 4.4 the density/has a Gaussian tail if and only if/~ he~v with y/ = </>*,
as above, and h = bf{sy/(2n)). We find that h(t) = aot

a*exp(a2t
dv), where the

coefficients a0 > 0, ax and a2 can be simply calculated. See [18] for an application to
extreme value theory.

REMARK 4.5. Statement (2) can be considered as an oscillation condition,
typically used as a Tauberian condition (see, for example, [19] and the results cited
therein), namely

lim sup max \h(u)-h{t)\/h(t) = 0.
t — ca t < u < t+<j>*"(t)~111

Usually a weaker Tauberian condition as, for example,

lim lim sup max \h(u) — h(i)\/h(t) = 0
A- .0+ t-»oo t JS U < t+X<j>*"(t)~U2

suffices. This can also be used here; consider (4.4) and let (w — v) be small. For related
one-sided Tauberian conditions, compare [19].

COROLLARY 4.6. Let the assumptions of Theorem 4.4 hold. If f does not have a
Gaussian tail then there exist sequences tn -> oo and an > 0 such that an/s(tn) -> 0 and
lim infn _ OT h(tn + an)/h(tn) > 1 with h = fe** as above. There exist similar sequences
such that lim supn _Kh(tn + an)/h{tn) < 1.
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We return now to the criterion of asymptotic convexity in Section 2. We claim that
condition (2.1) in Theorem 2.2 may be replaced by the weaker condition of asymptotic
midpoint convexity:

inflimsup sup ^-nr T^^ 1 - (4-5)

THEOREM 4.7. Suppose that the distribution function Fhas a very thin tail and that
the cumulant generating function % is asymptotically parabolic. Assume that F has a
density f which does not have a Gaussian tail. Then there exist sequences wn -*• oo and
an > 0 with an = o(wn) such that

/Vn)

Furthermore, the corresponding weak concavity condition is also violated.

Proof. The relation (4.1) wi th / n =f* and rn -> oo will hold for any interval
(v, w). By Theorem 3.3 there exists a sequence rn -*• oo such that /n(0) does not
converge to n0 ^0) = \/y/{2n). For a suitable subsequence there exists a constant
n > 0 such that |yn(0)| > Wn, where y/n(u) = log(n0tl(u)/fn(u)). The functions y/n

have spikes or oscillate. For large n the spikes are sharp and the frequency of
the oscillation is high since they have to average out over any interval (v, w) by
Lemma 4.1.

Let <5n->0 so that (4.1) holds on the intervals ((k-\)8n, (k+\)6n) for
k = — 4, — 3, . . . ,3,4. By Lemma 4.9 below there exist sequences xn < yn which
converge to 0 so that

VnM+VniyJ+n < Zv.Gfo+jO)- (4-6)
A change of variables gives y/(wn — an) + y/(wn + an) + n < 2y/(wn), where y/ = —log/,
and an = o(sn) with sn = a(zn) ~ s(wn), yielding the desired result.

REMARK 4.8. From the proof it is seen that we may choose an = o(s(wn)), where
s is the scale function of the Legendre transform of the cumulant generating function
X- Note that s is self-neglecting and hence s{w) = o(w) for w -> oo.

LEMMA 4.9. Let / : ( —5,5) -»• U be measurable and suppose that \f(u)\ > 10 for
some UE(— 1,1) and that the function f achieves a value less than 1 and a value greater
than — 1 in each of the nine intervals (k—\,k+ \)for k = — 4, .. . ,4. (This will be the
case if the average of the function over each of these intervals is less than 1 in absolute
value.) Then there exist x < y such that f[x)+f[y) + 1 < If(z) for z = \(x+y).

Proof. First assume that f[x) < — 10 in some point xe(— 1,1) and / > — 4 on
(1,3). Choose ye(3,5) so that J[y) < 1. Then the midpoint z lies in (1,3) and

Hence we may assume the existence of three points wx < w0 < w2 in ( — 3,3) such
that

Let a denote the supremum of/over the interval / = («l5 u2). If a is finite we choose
z € / so that/(z) > a — 1 and x and y are equidistant, with x = ux if ux is closer to z than
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w2, and otherwise y = u2. Then f(x) +f{y) + 1 ̂ a + cr+1 < a — 3 + a+\ < 2f\z). If a
is infinite we choose y so large that l{f> y) < 1. Choose zel with/(z) > y+ 1. The
set A = {t|0 < \t — z\ < 1, / ( 0 < y) n a s measure X(A) > 1, and so has the set A'
obtained by reflection in z. Hence X(A D A') > 0. Choose aeAOA'. Then z lies
midway between a and its reflection point a' and /(a) +j[a') + 1 ̂  2y+ 1 < 2/(z).

5. Tauberian conditions on the characteristic function

In this section we formulate Tauberian conditions on the characteristic function
(ct)j\\y) for yeU, which will ensure the existence of a density with a Gaussian tail.

In a recent paper [3] it was shown that the class of bounded densities with
Gaussian tails is closed under convolution. A natural question is: does there exist a
Tauberian theorem which allows a simple proof of the convolution closure. Here we
shall obtain a partial result in this direction. However, establishing the existence of
a Gaussian tail by inspection of the moment generating function is difficult: we are
able to construct a C°°-density/which satisfies (0.2) and (0.3) and which does not have
a Gaussian tail. Yet the difference between the moment generating function/? of the
random variable U* in (1.8) and the standard Gaussian moment generating function
nQ j(z) = e?1'1 is very small for T -> oo. The difference/7(z) — n0 x(z), and the derivatives
of this difference of any order, vanish faster than e~r'/3 for r -> oo. Moreover this order
of convergence holds uniformly for z in each vertical strip |9?z| < M in the complex
plane. Even in the simple casey^r) ~ exp(r2/2) for T -> oo, and under the excessive
magnification (by exp(|r2)) the t ransform/ in (0.1) does not reveal whether the
source function has the desired f o r m / ~ e~w with y/ asymptotically parabolic.

THEOREM 5.1. Suppose that the distribution function F has a very thin tail. Let ff
denote the moment generating function of the normalized random variable U* in (1.8).
Ifff(\y)->e~y212 in Lx(IR,fi(y) then F has a continuous density f with Gaussian tail.

Proof. Convergence of the characteristic functions in V implies uniform
convergence of the densities by the inversion theorem. In particular f is a bounded
continuous density for r ^ T0. Hence the density/of F exists and is continuous. By
Proposition 1.5,/has a Gaussian tail.

The Tauberian condition above is very similar to [8, Theorem 1 (iii)]. It is of
interest since it yields the convolution property below as a simple corollary.

COROLLARY 5.2. If two distribution functions Fl and F2 satisfy the conditions of
Theorem 5.1 then so does their convolution Fo = F^ *F2.

The proof follows from the next lemma, observing that the associated random
variables are i / J r = (C/liT+ C/2-T—/^(T)—/*2(T))/CT0(T), where a\ = o\ + o\.

LEMMA 5.3. Let an > 0 and /?„ > 0 satisfy a2+/?2 = 1 and let <f>n and y/n be
characteristic functions which converge to 9(y): = exp( — \y2) in the Lx-norm. Then the
product xn(y) = </>n(<xny)V/n(flny) converges to 9{y) in the Lx-norm as well.
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Proof. We assume that /?n ^ \. Then we have

The Lj-norm of the first term on the right is bounded by \\yn — 0n\\J(5n, which tends
to zero; the L r norm of the second term on the right vanishes asymptotically by the
dominated convergence theorem, since the expression is bounded by
26{f5ny) ^ exp(—\y2) and since \4>n{y) — 0(y)\ converges to zero uniformly on
bounded intervals.

The next two results contain sufficient conditions for the Lx-convergence of the
characteristic functions.

THEOREM 5.4. Suppose that the distribution function F has a very thin tail and its
cumulant generating function x is asymptotically parabolic. If there exist M > 0 and
X>\ such that for x large enough

(r)) ^ M foryeU, (5.1)

then F has a continuous density f with Gaussian tail.

Proof. The difference <f>x{y) = x(r + iy)~x(T)ls the logarithm of the characteristic
function of FT. Hence (using a2(x) = x"(T)) (5-1) gives

By assumption f*(iy) -* e y2'2 converges pointwise and Lebesgue's Theorem gives
convergence in L1. Hence Theorem 5.1 applies.

REMARK 5.5. If two distribution functions F1 and F2 both satisfy (5.1) with
constants Mx and M2 and some X>\, then the convolution Fo = Fx * F2 satisfies (5.1)
with constant Mo = M1 + M2. Thus within the class of densities with a Gaussian tail
we have a decreasing family of subclasses, indexed by X, of densities with a Gaussian
tail, each of which is closed under convolution.

The following result is related to a theorem of Berg [4].

THEOREM 5.6. Suppose that the distribution function Fhas a very thin tail and that
the cumulant generating function is asymptotically parabolic. If there exist constants
c > 0 and x0 such that for x ^ x0 we have

^ c > 0 forieU, (5.2)
X V

then F has a continuous density with Gaussian tail.

Proof. We know by Theorem 1.2 that U* = (UT-X'(T))S(X) -* NO V and hence
with S(t) = {x"{t))~112 we have

fi(iy) = e-
l»*Mswf{x + \yd{x))/f{x) • e~y2'2 as T > oo for any y e U.
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Furthermore by our assumption we find that

l o g / r * ( i y ) = - i y x ' ( ? ) W ) + X ( ? + i y X ? ) ) - X k ) = - x " ( r + i d y S ^

so 9? (log/f (i>0) ^ — \cy2 for yeU, x ^ T0. Hence for T large enough \f*(iy)\ ^ e~c^
with some c1 > 0 and by the Dominated Convergence Theorem our Theorem 5.1
applies.
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