627 research outputs found

    Neural signatures of strategic types in a two-person bargaining game

    Get PDF
    The management and manipulation of our own social image in the minds of others requires difficult and poorly understood computations. One computation useful in social image management is strategic deception: our ability and willingness to manipulate other people's beliefs about ourselves for gain. We used an interpersonal bargaining game to probe the capacity of players to manage their partner's beliefs about them. This probe parsed the group of subjects into three behavioral types according to their revealed level of strategic deception; these types were also distinguished by neural data measured during the game. The most deceptive subjects emitted behavioral signals that mimicked a more benign behavioral type, and their brains showed differential activation in right dorsolateral prefrontal cortex and left Brodmann area 10 at the time of this deception. In addition, strategic types showed a significant correlation between activation in the right temporoparietal junction and expected payoff that was absent in the other groups. The neurobehavioral types identified by the game raise the possibility of identifying quantitative biomarkers for the capacity to manipulate and maintain a social image in another person's mind

    Predictive coding for the actions and emotions of others and its deficits in autism spectrum disorders

    Get PDF
    Traditionally, the neural basis of social perception has been studied by showing participants brief examples of the actions or emotions of others presented in randomized order to prevent participants from anticipating what others do and feel. This approach is optimal to isolate the importance of information flow from lower to higher cortical areas. The degree to which feedback connections and Bayesian hierarchical predictive coding contribute to how mammals process more complex social stimuli has been less explored, and will be the focus of this review. We illustrate paradigms that start to capture how participants predict the actions and emotions of others under more ecological conditions, and discuss the brain activity measurement methods suitable to reveal the importance of feedback connections in these predictions. Together, these efforts draw a richer picture of social cognition in which predictive coding and feedback connections play significant roles. We further discuss how the notion of predicting coding is influencing how we think of autism spectrum disorder.</p

    You turn me cold: evidence for temperature contagion

    Get PDF
    Introduction During social interactions, our own physiological responses influence those of others. Synchronization of physiological (and behavioural) responses can facilitate emotional understanding and group coherence through inter-subjectivity. Here we investigate if observing cues indicating a change in another's body temperature results in a corresponding temperature change in the observer. Methods Thirty-six healthy participants (age; 22.9±3.1 yrs) each observed, then rated, eight purpose-made videos (3 min duration) that depicted actors with either their right or left hand in visibly warm (warm videos) or cold water (cold videos). Four control videos with the actors' hand in front of the water were also shown. Temperature of participant observers' right and left hands was concurrently measured using a thermistor within a Wheatstone bridge with a theoretical temperature sensitivity of <0.0001°C. Temperature data were analysed in a repeated measures ANOVA (temperature × actor's hand × observer's hand). Results Participants rated the videos showing hands immersed in cold water as being significantly cooler than hands immersed in warm water, F(1,34) = 256.67, p0.1). There was however no evidence of left-right mirroring of these temperature effects p>0.1). Sensitivity to temperature contagion was also predicted by inter-individual differences in self-report empathy. Conclusions We illustrate physiological contagion of temperature in healthy individuals, suggesting that empathetic understanding for primary low-level physiological challenges (as well as more complex emotions) are grounded in somatic simulation

    Emotional contagion and prosocial behavior in rodents

    Get PDF
    Empathy is critical to adjusting our behavior to the state of others. The past decade dramatically deepened our understanding of the biological origin of this capacity. We now understand that rodents robustly show emotional contagion for the distress of others via neural structures homologous to those involved in human empathy. Their propensity to approach others in distress strengthens this effect. Although rodents can also learn to favor behaviors that benefit others via structures overlapping with those of emotional contagion, they do so less reliably and more selectively. Together, this suggests evolution selected mechanisms for emotional contagion to prepare animals for dangers by using others as sentinels. Such shared emotions additionally can, under certain circumstances, promote prosocial behavior

    Neural mechanisms of costly helping in the general population and mirror-pain synesthetes

    Get PDF
    It has been argued that experiencing the pain of others motivates helping. Here, we investigate the contribution of somatic feelings while witnessing the pain of others onto costly helping decisions, by contrasting the choices and brain activity of participants that report feeling somatic feelings (self-reported mirror-pain synesthetes) against those that do not. Participants in fMRI witnessed a confederate receiving pain stimulations whose intensity they could reduce by donating money. The pain intensity could be inferred either from the facial expressions of the confederate in pain (Face condition) or from the kinematics of the pain-receiving hand (Hand condition). Our results show that self-reported mirror-pain synesthetes increase their donation more steeply, as the intensity of the observed pain increases, and their somatosensory brain activity (SII and the adjacent IPL) was more tightly associated with donation in the Hand condition. For all participants, activation in insula, SII, TPJ, pSTS, amygdala and MCC correlated with the trial by trial donation made in the Face condition, while SI and MTG activation was correlated with the donation in the Hand condition. These results further inform us about the role of somatic feelings while witnessing the pain of others in situations of costly helping.</p

    Sharing Positive Affective States Amongst Rodents

    Get PDF
    Group living is thought to benefit from the ability to empathize with others. Much attention has been paid to empathy for the pain of others as an inhibitor of aggression. Empathizing with the positive affect of others has received less attention although it could promote helping by making it vicariously rewarding. Here, we review this latter, nascent literature to show that three components of the ability to empathize with positive emotions are already present in rodents, namely, the ability to perceive, share, and prefer actions that promote positive emotional states of conspecifics. While it has often been argued that empathy evolved as a motivation to care for others, we argue that these tendencies may have selfish benefits that could have stabilized their evolution: approaching others in a positive state can provide information about the source of valuable resources; becoming calmer and optimistic around animals in a calm or positive mood can help adapt to the socially sensed safety level in the environment; and preferring actions also benefiting others can optimize foraging, reduce aggression, and trigger reciprocity. Together, these findings illustrate an emerging field shedding light on the emotional world of rodents and on the biology and evolution of our ability to cooperate in groups.</p
    corecore