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Chapter 14
Relating a Reified Adaptive Network’s
Emerging Behaviour Based on Hebbian
Learning to Its Reified Network
Structure

Abstract In this chapter another challenge is analysed for how emerging beha-
viour of an adaptive network can be related to characteristics of the adaptive net-
work’s structure. By applying network reification, the adaptation structure is
modeled itself as a network too: as a subnetwork of the reified network extending
the base network. In particular, this time the challenge is addressed for mental
networks with adaptive connection weights based on Hebbian learning. To this end
relevant properties of the network and the adaptation principle that have been
identified are discussed. Using network reification for modeling of the adaptation
principle, a central role is played by the combination function specifying the
aggregation for the reification states of the connection weights, and in particular,
identified mathematical properties of this combination function. As one of the
results it has been found that under some conditions in an achieved equilibrium
state the value of a connection weight has a functional relation to the values of the
connected states that can be identified.

Keywords Reified adaptive network � Hebbian learning � Analysis of behaviour

14.1 Introduction

As for Chap. 13 the challenging issue addressed here is to predict what patterns of
behaviour will emerge, and how their emergence depends on the structure of the
model, in particular for adaptive network models. Here adaptive behaviour
depends in some way on the reified network structure, defined by network char-
acteristics such as connections and their weights, and the aggregation of multiple
connections to one node. When adaptive networks are considered, where the net-
work characteristics also change over time, according to certain adaptation prin-
ciples this poses extra challenges. Such adaptation principles themselves depend on
certain adaptation characteristics. It is this latter issue what is the topic of the current
chapter: how does emerging behaviour of adaptive networks relate to the charac-
teristics of the network and of the adaptation principles used. More in particular, the
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focus is on adaptive Mental Networks based on Hebbian learning (Bi and Poo 2001;
Gerstner and Kistler 2002; Hebb 1949; Keysers and Perrett 2004; Keysers and
Gazzola 2014; Kuriscak et al. 2015). Hebbian learning is, roughly stated, based on
the principle ‘neurons that fire together, wire together’ from Neuroscience.

To address the issue, as a vehicle the Network-Oriented Modeling approach based
on temporal-causal networks (Treur 2016) is used together with the notion of network
reification from Chap. 3 and (Treur 2018a). For temporal-causal networks, charac-
teristics of the network structure Connectivity, Aggregation, and Timing are repre-
sented by connection weights, combination functions and speed factors. For the type
of adaptive networks considered, the connection weights are dynamic based on
Hebbian learning, so they are actually not part of the characteristics of the (static)
network structure anymore. Instead, by applying network reification the base network
is extended by reification states that represent the network characteristics such as in
this case the Connectivity characteristics indicated by connection weights and their
dynamics. In the reified network the dynamics of these reification states is defined by
the standard concepts for temporal-causal networks: connection weights for
Connectivity, speed factors for Timing, and combination functions for Aggregation of
the reification states. In particular, the focus here is on the mathematical properties of
these combination functions for the reification states as they play a main role in the
specification of an adaptation principle; e.g., see Chap. 3 or (Treur 2018a).

Based on the chosen approach, characteristics of Hebbian learning have been
identified that play an important role in the emerging behaviour; these character-
istics indeed have been expressed as mathematical properties of combination
functions for the reification states for connection weights.

In Fig. 14.1 the basic relation between structure and dynamics of a reified net-
work model is indicated by the horizontal arrow in the lower part representing the
base level. For a reified network these also apply to the reification states. The
properties of network structure focus on properties of the adaptation principle based
on Hebbian learning represented by the reification states at the reification level; they
are first discussed in a general setting in Sect. 14.4. Properties of the behaviour are
addressed in Sect. 14.4 as well and related to the network structure properties (the
horizontal arrow in the upper part of Fig. 14.1). In Sect. 14.5 these results are
refined by introducing an extra assumption on variable separation.

Conceptual Representation:
Network Structure

Numerical Representation:
Network Dynamics

Properties of the
Network Structure

Properties of Emerging 
Network Behaviour

Fig. 14.1 Bottom layer: the conceptual representation of a reified network model defines the
numerical representation. Top layer: properties of reified network structure entail properties of
emerging reified network behaviour
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In this chapter, results will be discussed that have been proven mathematically in
this way for this relation between structure and behavior for such reified adaptive
network models, in particular, for the equilibrium values of Hebbian learning in
relation to equilibrium values of the connected network states. These results have
been proven not for one specific model or function, but for classes of combination
functions that fulfill certain properties. More specifically, as one of the results it has
been found how for the classes of functions considered within an emerging equi-
librium state the connection weight and the connected states satisfy a fixed func-
tional relation that can be expressed mathematically.

In this chapter, in Sect. 14.2 the temporal-causal networks that are used as
vehicle are briefly introduced. Section 14.3 briefly introduces Hebbian learning and
how it can be modeled by a reified network. In Sect. 14.4 the properties of Hebbian
learning functions are introduced that define the adaptation principle of the network.
Section 14.5 focuses in particular on the class of functions for which a form of
variable separation can be applied, In Sect. 14.6 a number of examples are dis-
cussed. Finally, Sect. 14.7 is a discussion.

14.2 Temporal-Causal Networks and Network Reification

For the perspective on networks used in the current chapter, the interpretation of
connections based on causality and dynamics forms a basis of the structure and
semantics of the considered networks. More specifically, the nodes in a network are
interpreted here as states (or state variables) that vary over time, and the connections
are interpreted as causal relations that define how each state can affect other states
over time. This type of network has been called a temporal-causal network (Treur
2016). A conceptual representation of a temporal-causal network model by a labeled
graph provides a fundamental basis. Such a conceptual representation includes rep-
resenting in a declarative manner states and connections between them that represent
(causal) impacts of states on each other. This part of a conceptual representation is
often depicted in a conceptual picture by a graph with nodes and directed connec-
tions. However, a complete conceptual representation of a temporal-causal network
model also includes a number of labels for such a graph, representing network
characteristics such as Connectivity, Aggregation and Timing. A notion of strength of
a connection is used as a label for Connectivity, some way for Aggregation of
multiple causal impacts on a state is used, and a notion of speed of change of a state
is used for Timing of the processes. These three notions, called connection weight,
combination function, and speed factor, make the graph of states and connections a
labeled graph, and form the defining structure of a temporal-causal network model in
the form of a conceptual representation; see Table 14.1, first 5 rows.

There are many different approaches possible to address the issue of combining
multiple impacts. To provide sufficient flexibility, the Network-Oriented Modelling
approach based on temporal-causal networks incorporates for each state a way to
specify how multiple causal impacts on this state are aggregated by a combination
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function. For this aggregation a library with a number of standard combination
functions are available as options, but also own-defined functions can be added.

Next, this conceptual interpretation is expressed in a formal-numerical way, thus
associating semantics to any temporal-causal network specification in a detailed
numerical-mathematically defined manner.

This is done by showing how a conceptual representation based on states and
connections enriched with labels for connection weights, combination functions and
speed factors, can get an associated numerical representation (Treur 2016), Chap. 2;
see Table 14.1, last five rows. The difference equations in the last row in Table 14.1
constitute the numerical representation of the temporal-causal network model and

Table 14.1 Concepts of conceptual and numerical representations of a temporal-causal network

Concepts Notation Explanation

States and
connections

X, Y, X!Y Describes the nodes and links of a network structure (e.g.,
in graphical or matrix format)

Connection
weight

xX,Y The connection weight xX,Y 2 [−1, 1] represents the
strength of the causal impact of state X on state Y through
connection X!Y

Aggregating
multiple impacts

cY(..) For each state Y (a reference to) a combination function
cY(..) is chosen to combine the causal impacts of other
states on state Y

Timing of the
causal effect

ηY For each state Y a speed factor ηY � 0 is used to represent
how fast a state is changing upon causal impact

Concepts Numerical representation Explanation

State values
over time t

Y(t) At each time
point t each state
Y in the model has
a real number
value, usually in
[0, 1]

Single causal
impact

impactX;Y ðtÞ ¼ xX;YXðtÞ At t state X with
connection to
state Y has an
impact on Y,
using weight xX,Y

Aggregating
multiple
impacts

aggimpactY ðtÞ
¼ cY ðimpactX1 ;Y ðtÞ; . . .; impactXk ;Y ðtÞÞ
¼ cY ðxX1 ;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ

The aggregated
causal impact of
multiple states Xi

on Y at t, is
determined using
combination
function cY(..)

Timing of
the causal
effect

YðtþDtÞ ¼ YðtÞþ gY aggimpactY ðtÞ � YðtÞ½ �Dt
¼ YðtÞþ gY ½cY ðxX1 ;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ � YðtÞ�Dt

The causal impact
on Y is exerted
over time
gradually, using
speed factor ηY
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can be used for simulation and mathematical analysis; it can also be written in
differential equation format:

YðtþDtÞ ¼ YðtÞþ gY ½cYðxX1;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ � YðtÞ�Dt
dYðtÞ=dt ¼ gY ½cYðxX1;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ � YðtÞ� ð14:1Þ

In adaptive networks some of the network structure characteristics such as
connection weights are dynamic and actually should be treated more in the same
way as states. The concept of network reification provides a neat definition for
doing this. By introducing additional network states WX,Y representing them, called
reification states, network reification avoids that connection weights xX,Y get an
ambiguous status. The thus extended network is a reified network. In Sect. 14.3 this
will be discussed for Hebbian learning in particular.

14.3 Reified Adaptive Networks for Hebbian Learning

In Sect. 14.3 the basics of Hebbian learning and reification for it are briefly sum-
marized. Next, in Sect. 14.4 relevant properties for Hebbian learning combina-
tion functions are discussed and how they imply certain behaviour. Recall from
Chap. 1, Fig. 1.4 the way in which Hebbian learning can be modeled by network
reification; see also Fig. 14.2 here. Following this reification approach, the adap-
tation principle and the dynamics it entails gets a specification in the standard form
of a temporal-causal network structure, as a subnetwork of the reified network. In
particular, the combination function for the reification state and its mathematical
properties play a main role.

WX2,Y

WX1,Y

cWX2,Y (V1, V2, W )

cWX2,Y(V1, V2, W)

Fig. 14.2 Hebbian learning combination functions as labels in a reified network
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14.3.1 Reification States for Hebbian Learning and Their
Hebbian Learning Combination Functions

The Hebbian learning principle for the connection between two mental states is
sometimes formulated as ‘neurons that fire together, wire together’; e.g., (Bi and
Poo 2001; Gerstner and Kistler 2002; Hebb 1949; Keysers and Perrett 2004;
Keysers and Gazzola 2014; Kuriscak et al. 2015; Zenke et al. 2017). This can be
modelled by using the activation values the two mental states X(t) and Y(t) have at
time t. Then the reification state WX,Y for the weight xX,Y of the connection from
X to Y is changing over time dynamically, depending on these levels X(t) and Y(t),
but also on the value of WX,Y itself. Therefore these Hebbian learning combination
functions c(V1, V2, W) have suitable arguments refering to the relevant states: V1

refers to the state value X(t) of X, V2 to the state value Y(t) of Y and W to the state
value WX,Y(t) of WX,Y. In Fig. 14.2, the Hebbian learning combination functions
cWX1 ;Y

(V1, V2, W) and cWX2 ;Y
(V1, V2, W) are indicated as labels for the reification

states WX1;Y and WX2;Y . Similarly, labels for adaptation speed (speed factors
indicating the learning rate) can be added, and labels for the incoming connections
for the reification states.

Thus in the standard way for temporal-causal networks based on such Hebbian
learning combination functions the following difference and differential equations
are obtained for the reification states; these define the adaptive dynamics of
Hebbian learning:

WX;Y ðtþDtÞ ¼ WX;YðtÞþ gWX;Y
cðXðtÞ; YðtÞ;WX;YðtÞÞ �WX;YðtÞ
� �

Dt

dWX;YðtÞ=dt ¼ gWX;Y
cðXðtÞ; YðtÞ;WX;YðtÞÞ �WX;Y ðtÞ
� � ð14:2Þ

Here indeed the speed factor ηWX,Y now can be interpreted as learning rate for the
connection weight.

14.3.2 An Example Reified Network Model with Multiple
Hebbian Learning Reification States

An example of an adaptive mental network model using Hebbian learning is shown
in Fig. 14.3; see also (Treur and Umair 2011) or (Treur 2016), Chap. 6, p. 163.
Here wsw are world states, ssw sensor states, srsw and srsei sensory representations
states for stimulus w and action effect ei, psai preparation states for ai, fsei feeling
states for action effect ei, and esai execution states for ai.

It describes adaptive decision making as affected by three different adaptive
connections (the green arrows in the base plane in Fig. 14.3) both for direct trig-
gering of decision options ai and emotion-related valuing of the options by an as-if
prediction loop:
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• stimulus-response connection from srsw to action option preparation psai
• action effect prediction link from psai to effect representation srsei
• emotion-related valuing of the action by the connection from feeling state fsei to

psai

Each of these connections can use Hebbian learning. A relatively simple example,
also used in (Treur 2016) in a number of applications (including in Chap. 6 there
for the model shown in Fig. 14.3), is the following Hebbian learning combination
function:

cWX;Y V1;V2;Wð Þ ¼ V1V2 1�Wð Þþ lW

or

cWX;Y ðXðtÞ; YðtÞ;WX;YðtÞÞ ¼ XðtÞYðtÞð1�WX;YðtÞÞþ lWX;YðtÞ
ð14:3Þ

Here l is a persistence parameter. In an emerging equilibrium state it turns out that
the equilibrium value for WX,Y functionally depends on the equilibrium values of
X and Y according to a specific formula that has been determined for this case in
(Treur 2016), Chap. 12, Sect. 12.5.2. For some example patterns, see Fig. 14.4.

It is shown that when the equilibrium values of X and Y are 1, the equilibrium
value for WX,Y is 0.83 (top row), when the equilibrium values of X and Y are 0.6,
the equilibrium value for WX,Y is 0.64 (middle row), and when the equilibrium
values of X and Y are 0, the equilibrium value for WX,Y is 0 (bottom row). This
equilibrium value of WX,Y is always attracting. The three different rows in Fig. 14.4
illustrate how the equilibrium value of WX,Y varies with the equilibrium values of
X and Y. It is this relation that is analysed in a more general setting in some depth in
this chapter. In (Treur 2016), Chap. 12 a mathematical analysis was made for the
equilibria of the specific example combination function above (although written in
the slightly different but equivalent format as discussed in Chap. 15, Sect. 15.2). In
the current chapter a much more general analysis is made which applies to a wide

ssw
ssei

wsw srsw

srsei fsei

psai esai

Wsrsw, psai
Wfsei, psai

Wpsai,srsei

Fig. 14.3 Reified temporal-causal network model for adaptive rational decision making based on
emotions
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class of functions. In Example 1 in Sect. 14.6 below, the above case is obtained as a
special case of the more general results found, and more precise numbers will be
derived for the equilibrium values.

14.4 Relevant Aggregation Characteristics for Hebbian
Learning and the Implied Behaviour

In this section, it is discussed how in a reified network aggregation for the con-
nection weight reification state can be defined by a specific class of combination
functions for Hebbian learning, and it will be analysed what equilibrium values can
emerge for the learnt connections.

14.4.1 Relevant Aggregation Characteristics for Hebbian
Learning

First a basic definition; see also (Brauer and Nohel 1969; Hirsch 1984; Lotka 1956).

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Fig. 14.4 Hebbian learning η = 0.4, l = 0.8, Δt = 0.1; adopted from (Treur 2016), pp. 339–340.
a Top row: activation levels X1 = 1 and X2 = 1; equilibrium value 0.83. b Middle row activation
levels X1 = 0.6 and X2 = 0.6; equilibrium value 0.64. c Bottom row: activation levels X1 = X2 = 0;
equilibrium value 0 (pure extinction)
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Definition 1 (stationary point and equilibrium)
A state Y has a stationary point at t if dY(t)/dt = 0. The network is in equilibrium a
t if every state Y of the model has a stationary point at t. A state Y is increasing at t if
dY(t)/dt > 0; it is decreasing at t if dY(t)/dt < 0.

Considering the specific type of differential equation for a temporal-causal
network model, and assuming a nonzero speed factor, from (14.1) and (14.2) more
specific criteria can be found:

Lemma 1 (Criteria for a stationary, increasing and decreasing)
Let Y be a state and X1, …, Xk the states from which state Y gets its incoming
connections. Then

Y has a stationary point at t
Y is increasing at t
Y is decreasing at t

,
,
,

cYðxX1;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ ¼ YðtÞ
cYðxX1;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ[ YðtÞ
cY ðxX1;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ\YðtÞ

These criteria can also be applied to adaptive connection weights based on Hebbian
learning combination functions c(V1, V2, W) for the reification states WX,Y:

WX;YðtÞ has a stationary point at t
WX;YðtÞ is increasing at t
WX;YðtÞ is decreasing at t

,
,
,

cðV1;V2;WÞ ¼ W
cðV1;V2;WÞ[W
cðV1;V2;WÞ\W

The following plausible assumptions are made for the Hebbian learning func-
tions used as combination function to specify aggregation of the reification state in
the reified network: one set for fully persistent Hebbian learning and one set for
hebbian learning with extinction described by a persistence parameter l; here again
V1 is the argument of the function cY(..) used for X(t), V2 for Y(t), andW forWX,Y(t).

Definition 2 (Hebbian Learning Function)
A function c: [0, 1] � [0, 1] � [0, 1] ! [0, 1] is called a fully persistent Hebbian
learning function if the following hold:

(a) c(V1, V2, W) is a monotonically increasing function of V1 and V2

(b) c(V1, V2, W) − W is a monotonically decreasing function of W
(c) c(V1, V2, W) � W
(d) c(V1, V2, W) = W if and only if one of V1 and V2 is 0 (or both), or W = 1

A function c: [0, 1] � [0, 1] � [0, 1]! [0, 1] is called a Hebbian learning function
with persistence parameter l if the following hold:

(a) c(V1, V2, W) is a monotonically increasing function of V1 and V2

(b) c(V1, V2, W) − lW is a monotonically decreasing function of W
(c) c(V1, V2, W) � lW
(d) c(V1, V2, W) = lW if and only if one of V1 and V2 is 0 (or both), or W = 1

Note that for l = 1 the function is fully persistent.
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14.4.2 Functional Relation for the Equilibrium Value
of a Hebbian Learning Reification State

The following proposition shows that for any Hebbian learning function with
persistence parameter l there exists a monotonically increasing function fl(V1, V2)
which is implicitly defined for given V1, V2 by the equation c(V1, V2, W) = W in
W. When applied to an equilibrium state of an adaptive temporal-causal network,
the existence of this function fl(V1, V2) reveals that in equilibrium states there is a
direct and monotonically increasing functional relation of the equilibrium value
WX,Y of WX,Y with the equilibrium values X, Y of the states X and Y. This is
described in Theorem 1 below. Proposition 1 describes the functional relation
needed for that. For proofs of Propositions 1 and 2, see Chap. 15, Sect. 15.9.

Proposition 1 (functional relation for W)
Suppose that c(V1, V2, W) is a Hebbian learning function with persistence
parameter l.

(a) Suppose l < 1. Then the following hold:
(i) The function W ! c(V1, V2, W) − W on [0, 1] is strictly monotonically

decreasing
(ii) There is a unique function fl: [0, 1] x [0, 1] ! [0, 1] such for any V1, V2 it

holds

cðV1;V2; flðV1;V2ÞÞ ¼ flðV1;V2Þ

This function fl is a monotonically increasing function of V1, V2, and is
implicitly defined by the above equation. Its maximal value is fl(1, 1) and
minimum fl(0, 0) = 0.

(b) Suppose l = 1. Then there is a unique function f1: (0, 1] � (0, 1] ! [0, 1],
such for any V1, V2 it holds

cðV1;V2; f1ðV1;V2ÞÞ ¼ f1ðV1;V2Þ

This function f1 is a constant function of V1, V2 with f1(V1, V2) = 1 for all V1,
V2 > 0 and is implicitly defined on (0, 1] � (0, 1] by the above equation.
If one of V1, V2 is 0, then any value of W satisfies the equation c(V1, V2,
W) = W, so no unique function value for f1(V1, V2) can be defined then.

When applied to an equilibrium state of a reified adaptive temporal-causal
network, this proposition entails the following Theorem 1. For l < 1 this follows
from Proposition 1 (a) applied to the function c(..). From (a)(i) it follows that the
equilibrium value WX,Y is attracting: suppose WX,Y(t) < WX,Y, then from c(V1, V2,
WX,Y) − WX,Y = 0 and the decreasing monotonicity of W ! c(V1, V2, W) − W it
follows that c(V1, V2, WX,Y(t)) − WX,Y(t) > 0, and therefore by Lemma 1 WX,Y(t) is

362 14 Relating a Reified Adaptive Network’s Emerging Behaviour Based …



increasing. Similarly, when WX,Y(t) > WX,Y, it is decreasing. For l = 1 the state-
ment follows from Proposition 1 (b) applied to the function c(..).

Theorem 1 (functional relation for equilibrium values of WX,Y) Suppose in a
reified temporal-causal network, c(V1, V2, W) is the combination function for
reification state WX,Y for connection weight xX,Y and is a Hebbian learning function
with persistence parameter l, with fl the function defined by Proposition 1. In an
achieved equilibrium state the following hold.

(a) Suppose l < 1. For any equilibrium values X, Y 2 [0, 1] of states X and Y the
value fl(X, Y) provides the unique equilibrium value WX,Y for WX,Y. This WX,Y

monotonically depends on X, Y: it is higher when X, Y are higher. The maximal
equilibrium value WX,Y of WX,Y is fl(1, 1) and the minimal equilibrium value is
0. Moreover, the equilibrium value WX,Y is attracting.

(b) Suppose l = 1. If for the equilibrium values X, Y 2 [0, 1] of states X and Y it
holds X, Y > 0, then WX,Y = 1. If one of X, Y is 0, then WX,Y can be any value
in [0, 1]: it does not depend on X, Y. So, for l = 1 the maximal value ofWX,Y in
an equilibrium state is 1 and the minimal value is 0.

14.5 Variable Separation for Hebbian Learning Functions
and the Implied Behaviour

There is a specific subclass of Hebbian learning functions that is often used. For this
subclass the implied behaviour can be determined more explicitly by obtaining
certain algebraic formulae for the function fl in Theorem 1.

14.5.1 Hebbian Learning Combination Functions
with Variable Separation

Relatively simple functions c(V1, V2, W) that satisfy the requirements from
Definition 2 are obtained when the state arguments V1 and V2 and the connection
argument W can be separated as follows.

Definition 3 (variable separation)
The Hebbian learning function c(V1, V2, W) with persistence parameter l enables
variable separation by functions cs: [0, 1] � [0, 1] ! [0, 1] monotonically
increasing and cs: [0, 1] ! [0, 1] monotonically decreasing if

cðV1;V2;WÞ ¼ csðV1;V2Þcc Wð Þþ lW

14.4 Relevant Aggregation Characteristics for Hebbian Learning … 363



where cs(V1, V2) = 0 if and only if one of V1, V2 is 0, and cc(1) = 0 and cc(W) > 0
when W < 1.

The function cs(V1, V2) is called the states factor and the function cc(W) the
connection factor.

Note that the s in cs stands for states and the second c in cc for connection. When
variable separation holds, the following proposition can be obtained. For this type
of function the indicated functional relation can be defined.

Proposition 2 (functional relation for W based on variable separation)
Assume the Hebbian function c(V1, V2, W) with persistence parameter l enables
variable separation by the two functions cs(V1, V2) monotonically increasing and
cc(W) monotonically decreasing:

cðV1;V2;WÞ ¼ csðV1;V2Þcc Wð Þþ lW

Let hl(W) be the function defined for W 2 [0, 1) by

hl Wð Þ ¼ 1� lð ÞW
cc Wð Þ

Then the following hold.

(a) When l < 1 the function hl(W) is strictly monotonically increasing, and has a
strictly monotonically increasing inverse gl on the range hl([0, 1)) of hl with
W = gl(hl(W)) for all W2 [0, 1).

(b) When l < 1 and c(V1, V2, W) = W, then gl(cs(V1, V2)) < 1 and W < 1, and it
holds

hl Wð Þ ¼ csðV1;V2Þ
W ¼ glðcsðV1;V2ÞÞ

So, in this case the function fl from Theorem is the function composition gl o
cs of cs followed by gl; it holds:

flðV1;V2Þ ¼ glðcsðV1;V2ÞÞ

(c) For l = 1 it holds c(V1, V2, W) = W if and only if V1 = 0 or V2 = 0 or W = 1.
(d) For l < 1 the maximal value W with c(V1, V2, W) = W is gl(cs(1, 1)), and the

minimal equilibrium value W is 0. For l = 1 the maximal value W is 1 (always
when V1, V2 > 0 holds) and the minimal value is 0 (occurs when one of V1, V2

is 0).

Note that by Proposition 2 the function fl(V1, V2) can be determined by inverting
the function hl(W) = (1− l)W/cc(W) to find gl and composing the inverse with the
function cs(V1, V2). This will be shown below for some cases.
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14.5.2 Functional Relation for the Equilibrium Value
of a Hebbian Learning Reification State:
The Variable Separation Case

For the case of an equilibrium state of a reified adaptive temporal network model
Proposition 2 entails Theorem 2.

Theorem 2 (functional relation for equilibrium values of WX,Y: variable
separation)
Assume in a reified temporal-causal network the Hebbian learning combination
function c(V1, V2, W) with persistence parameter l for WX,Y enables variable
separation by the two functions cs(V1, V2) monotonically increasing and cc
(W) monotonically decreasing, and the functions fl and gl is defined as in
Propositions 1 and 2. Then the following hold.

(a) When l < 1 in an achieved equilibrium state with equilibrium values X, Y for
states X and Y and WX,Y for WX,Y it holds

WX;Y ¼ fl X;Yð Þ ¼ gl cs X;Yð Þð Þ\1

(b) For l = 1 in an equilibrium state with equilibrium values X, Y for states X and
Y and WX,Y for WX,Y it holds X = 0 or Y = 0 or WX,Y = 1.

(c) For l < 1 in an equilibrium state the maximal equilibrium value WX,Y for WX,Y

is gl(cs(1, 1)) < 1, and the minimal equilibrium value WX,Y is 0. For l = 1 the
maximal value is 1 (always when X, Y > 0 holds for the equilibrium values for
the states X and Y) and the minimal value is 0 (which occurs when one of
X, Y is 0).

14.6 Implications for Different Classes of Hebbian
Learning Functions

In this section some cases are analysed as corollaries of Theorem 2.

14.6.1 Hebbian Learning Functions with Variable
Separation and Linear Connection Factor

First the specific class of Hebbian learning functions enabling variable separation
with cc(W) = 1 − W is considered. Then
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hl Wð Þ ¼ 1� lð ÞW
cc Wð Þ ¼ 1� lð ÞW

1�W
ð14:4Þ

and the inverse gl(W′) of hl(W) can be determined from (14.4) algebraically as
shown in Box 14.1.

Box 14.1 Inverting hl(W) for linear connection factor cc(W) = 1−W

W 0 ¼ hl Wð Þ ¼ 1�lð ÞW
1�W

W 0 1�Wð Þ ¼ ð1� lÞW
W 0 �W 0W ¼ ð1� lÞW
W 0 ¼ ðW 0 þ ð1� lÞÞW
W ¼ W 0

W 0 þ 1�lð Þ
gl W 0ð Þ ¼ W 0

W 0 þ 1�lð Þ

So it has been found that

gl W 0ð Þ ¼ W 0

W 0 þ 1� lð Þ ð14:5Þ

Substitute W′ = cs(V1, V2) in (14.5) and it is obtained:

flðV1;V2Þ ¼ gl cs V1;V2ð Þð Þ ¼ cs V1;V2ð Þ
1� lð Þþ cs V1;V2ð Þ ð14:6Þ

and this is less than 1 because 1− l > 0. From this and Theorem 2 (b) and (c) it
follows.

Corollary 1 (cases for connection factor cc(W) = 1 − W)
Assume in a reified temporal-causal network the Hebbian learning combination
function c(V1, V2, W) for WX,Y with persistence parameter l enables variable
separation by the two functions cs(V1, V2) monotonically increasing and cc
(W) monotonically decreasing, where for the connection factor it hols cc
(W) = 1 − W. Then the following hold.

(a) When l < 1 in an equilibrium state with equilibrium values X, Y for states
X and Y and WX,Y for WX,Y it holds

WX;Y ¼ fl X;Yð Þ ¼ cs X;Yð Þ
1� lð Þþ cs X;Yð Þ\1
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(b) For l = 1 in an equilibrium state with equilibrium values X, Y for states X and
Y and WX,Y for WX,Y it holds X = 0 or Y = 0 or WX,Y = 1.

(c) For l < 1 in an equilibrium state the maximal equilibrium value WX,Y for WX,Y

is

cs 1; 1ð Þ
1� lð Þþ cs 1; 1ð Þ\1

and the minimal equilibrium value WX,Y is 0. For l = 1 the maximal value is 1
(when X, Y > 0 holds for the equilibrium values for the states X and Y) and the
minimal value is 0 (which occurs when one of X, Y is 0).

Corollary 1 is illustrated in the three examples shown in Box 14.2. Note that
Table 14.2 summarizes these results.

Box 14.2 Different examples of Hebbian learning functions with variable
separation with linear connection factor cc(W) = 1 − W
Example 1 c(V1, V2, W) = V1V2(1−W) + lW

csðV1;V2Þ ¼ V1V2 cc Wð Þ ¼ 1�W

This is the example shown in Fig. 14.4

flðV1;V2Þ ¼ cs V1;V2ð Þ
1� lð Þþ cs V1;V2ð Þ ð14:7Þ

Substitute cs(V1, V2) = V1V2 in (14.7) then flðV1;V2Þ ¼ V1V2
1�lð ÞþV1V2

Maximal W is Wmax ¼ fl 1; 1ð Þ ¼ 1
2�l, which for l = 1 is 1; minimal W is 0.

The equilibrium values shown in Fig. 14.4 can immediately be derived from
this (recall l = 0.8):

Table 14.2 Special cases for variable separation

cc(W) cs(V1, V2) Equilibrium value WX,

Y = fl(X, Y)
Maximal equilibrium value
WX,Y

1 − W V1V2 X Y/[(1−l) +X Y] 1
2�lffiffiffiffiffiffiffiffiffiffi

V1V2
p ffiffiffiffiffiffiffi

XY
p

=½ð1� lÞþ ffiffiffiffiffiffiffi
XY

p � 1
2�l

V1V2(V1 + V2) XY XþYð Þ
1�lð ÞþXY XþYð Þ

2
3�l

1 − W2 V1V2(V1 + V2) � 1�lð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�lð Þ2 þ 4 XY XþYð Þð Þ2

p
2XY XþYð Þ

� 1�lð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�lð Þ2 þ 16

p
4
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Figure 14.4, top row V1 ¼ 1 V2 = 1, then fl 1; 1ð Þ ¼ 1
2�l = 0.833333

Figure 14.4, middle row V1 ¼ 0:6, V2 = 0.6, then
fl(0.6, 0.6) = 0.36/[(1 − 0.8) + 0.36] = 0.642857
Figure 14.4, bottom row V1 ¼ 0, V2 = 0, then fl(0, 0) = 0

Example 2 cðV1;V2;WÞ ¼ ffiffiffiffiffiffiffiffiffiffi
V1V2

p
1�Wð Þþ lW

csðV1;V2Þ ¼
ffiffiffiffiffiffiffiffiffiffi
V1V2

p
cc Wð Þ ¼ 1�W

flðV1;V2Þ ¼ cs V1;V2ð Þ=½ð1� lÞþ cs V1;V2ð Þ� ð14:8Þ

Substitute cs V1;V2ð Þ ¼ ffiffiffiffiffiffiffiffiffiffi
V1V2

p
in (14.8) to obtain

flðV1;V2Þ ¼
ffiffiffiffiffiffiffiffiffiffi
V1V2

p
1� lð Þþ ffiffiffiffiffiffiffiffiffiffi

V1V2
p ð14:9Þ

Maximal W is Wmax ¼ fl 1; 1ð Þ ¼ 1
2�l, which for l = 1 is 1; minimal W is 0.

In a similar case as in Fig. 14.4, but now using this function, the following
equilibrium values would be found

Top row V1 = 1, V2 = 1, then fl 1; 1ð Þ ¼ 1
2�l = 0.833333

Middle row V1 = 0.6, V2 = 0.6, then
fl(0.6, 0.6) = 0.6/[(1 − 0.8) + 0.6] = 0.75
Bottom row V1 = 0, V2 = 0, then fl(0, 0) = 0

Example 3 c(V1, V2, W) = V1V2(V1 + V2)(1 − W) + lW

csðV1;V2Þ ¼ V1V2 V1 þV2ð Þ cc Wð Þ ¼ 1�W

flðV1;V2Þ ¼ cs V1;V2ð Þ
1� lð Þþ cs V1;V2ð Þ ð14:10Þ

Substitute cs(V1, V2) = V1V2(V1 + V2) in (14.10) to obtain

flðV1;V2Þ ¼ V1V2 V1 þV2ð Þ
1� lð ÞþV1V2 V1 þV2ð Þ ð14:11Þ

Maximal W is Wmax ¼ fl 1; 1ð Þ ¼ 2
1�lð Þþ 2 ¼ 2

3�l, which for l = 1 is 1;

minimal W is 0.
In a similar case as in Fig. 14.4, but using this function the following

equilibrium values would be found
Top row V1 = 1, V2 = 1, then fl 1; 1ð Þ ¼ 2

3�l = 0.909090

Middle row V1 = 0.6, V2 = 0.6, then fl(0.6, 0.6) = 0.36 *1.2/[(1 − 0.8) +
0.36 *1.2] = 0.632

Bottom row V1 = 0, V2 = 0, then fl(0, 0) = 0
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14.6.2 Hebbian Learning Functions with Variable
Separation and Quadratic Connection Factor

Next the specific class of Hebbian learning functions enabling variable separation
with cc(W) = 1 − W2 is considered. In that case it holds

hl Wð Þ ¼ 1� lð ÞW
cc Wð Þ ¼ 1� lð ÞW

1�W2 ð14:12Þ

and the inverse of hl can be determined algebraically as shown in Corollary 2.
Inverting hl(W) to get inverse glðW 0Þ now can be done as shown in Box 14.3:

Box 14.3 Inverting hl(W) for quadratic connection factor cc(W) = 1 − W2

W 0 ¼ hl Wð Þ ¼ 1� lð ÞW
1�W2

1�W2� �
W 0 ¼ ð1� lÞW

�W 0 þ ð1� lÞW þW2W 0 ¼ 0

This is a quadratic equation in W:

W 0W2 þð1� lÞW �W 0 ¼ 0

As W � 0 the solution is

W ¼
� 1� lð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lð Þ2 þ 4W 02

q

2W 0

Therefore

gl W 0ð Þ ¼
� 1� lð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lð Þ2 þ 4W 02

q

2W 0

So, from Box 14.3:

gl W 0ð Þ ¼
� 1� lð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lð Þ2 þ 4W 02

q

2W 0 ð14:13Þ
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By substituting W 0 = cs(V1, V2) it follows

flðV1;V2Þ ¼ glðcsðV1;V2ÞÞ ¼
� 1� lð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lð Þ2 þ 4cs V1;V2ð Þ2

q

2cs V1;V2ð Þ ð14:14Þ

All this is summarised in the following:

Corollary 2 (cases for quadratic connection factor cc(W) = 1− W2)
Assume in a reified temporal-causal network the Hebbian learning combination
function c(V1, V2, W) for WX,Y with persistence parameter l enables variable
separation by the two functions cs(V1, V2) monotonically increasing and cc
(W) monotonically decreasing, where for the connection factor it holds cc
(W) = 1 − W2. Then the following hold.

(a) When l < 1 in an equilibrium state with equilibrium values X, Y for states
X and Y and WX,Y for WX,Y it holds

WX;Y ¼ flðX;YÞ ¼
� 1� lð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lð Þ2 þ 4cs X;Yð Þ2

q

2cs X;Yð Þ \1

(b) For l = 1 in an equilibrium state with equilibrium values X, Y for states X and
Y and WX,Y for WX,Y it holds X = 0 or Y = 0 or WX,Y = 1.

(c) For l < 1 in an equilibrium state the maximal equilibrium value WX,Y for WX,Y

is

� 1� lð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lð Þ2 þ 4cs 1; 1ð Þ2

q

2cs 1; 1ð Þ \1

and the minimal equilibrium value WX,Y is 0. For l = 1 the maximal value is 1
(when X, Y > 0 holds for the equilibrium values for the states X and Y) and the
minimal value is 0 (which occurs when one of X, Y is 0).

Corollary 2 is illustrated in Example 4 in Box 14.4.

Box 14.4 Example of a Hebbian learning function with variable separation
with quadratic connection factor cc(W) = 1 − W2

Example 4 c(V1, V2, W) = V1V2(V1 + V2)(1 − W2) + lW

csðV1;V2Þ ¼ V1V2ðV1 þV2Þ cc Wð Þ ¼ 1�W2

flðV1;V2Þ ¼
� 1� lð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lð Þ2 þ 4cs V1;V2ð Þ2

q

2cs V1;V2ð Þ
ð14:15Þ
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Substitute cs(X, Y) = XY (X + Y)

flðX;YÞ ¼
� 1� lð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lð Þ2 þ 4 XY XþYð Þð Þ2

q

2XY XþYð Þ ð14:16Þ

Maximal W is

Wmax ¼ fl 1; 1ð Þ ¼
� 1� lð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lð Þ2 þ 16

q

4

which for l = 1 is 1; minimal W is 0. In a similar case as in Fig. 14.4, using
this function the equilibrium values can be found by applying (18).

14.7 Discussion

In this chapter it was analysed how emerging behaviour of an adaptive network can
be related to characteristics of reified network structure addressing adaptation
principles. Parts of this chapter were adopted from (Treur 2018b). In particular this
was addressed for an adaptive Mental Network based on Hebbian learning (Bi and
Poo 2001; Gerstner and Kistler 2002; Hebb 1949; Keysers and Perrett 2004;
Keysers and Gazzola 2014; Kuriscak et al. 2015; Zenke et al. 2017). The approach
followed is based on network reification applied to Connectivity characteristics of a
network expressed by connection weights; see Chap. 3. This makes that the base
network is extended by reification states representing the adaptive connection
weights. Applying the standard temporal-causal network structure characteristics,
these reification states get their own combination functions assigned to define
aggregation of the incoming impact. Such combination functions can be used to
define certain types of Hebbian learning. Given these, relevant properties of the
combination functions defining variants of the Hebbian adaptation principle have
been identified together with their implied behaviour.

For different classes of Hebbian learning combination functions, emerging
equilibrium values for the connection weight have been expressed as a function of
the emerging equilibrium values of the connected states. The presented results do
not concern results for just one type of network or function, as more often is found,
but were formulated and proven at a more general level and therefore can be applied
not just to specific networks but to classes of networks satisfying the identified
relevant properties of reified network structure including the adaptation character-
istics as specified by the Hebbian learning combination function.
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