8 research outputs found

    Impregnated fibre bundle test for natural fibres used in composites

    No full text
    International audienceIn this study, the impregnated fibre bundle test, a common method used by carbon and glass fibre manufacturers to determine the properties of fibres used in composites, was adapted for natural fibres and validated by a round robin test on one type of natural fibres, namely flax fibres. Five European laboratories have carried out in parallel the impregnated fibre bundle test, on the same batch of hackled flax (long fibres), to check the applicability and reliability of this modified method on natural fibres. The results were compared to the more traditional single fibre test on elementary fibres. The back-calculated fibre stiffness shows a very low scatter between the five laboratories of less than +/- 5% (59.8 +/- 2.4 GPa, as measured between 0 and 0.1% strain). The fibre ultimate tensile strength of 527 +/- 138 MPa has a higher scatter, compared to stiffness values, as this property is highly sensitive to imperfections and flaws

    Impregnated fibre bundle test for natural fibres used in composites

    No full text
    In this study, the impregnated fibre bundle test, a common method used by carbon and glass fibre manufacturers to determine the properties of fibres used in composites, was adapted for natural fibres and validated by a round robin test on one type of natural fibres, namely flax fibres. Five European laboratories have carried out in parallel the impregnated fibre bundle test, on the same batch of hackled flax (long fibres), to check the applicability and reliability of this modified method on natural fibres. The results were compared to the more traditional single fibre test on elementary fibres. The back-calculated fibre stiffness shows a very low scatter between the five laboratories of less than ±5% (59.8 ± 2.4 GPa, as measured between 0 and 0.1% strain). The fibre ultimate tensile strength of 527 ± 138 MPa has a higher scatter, compared to stiffness values, as this property is highly sensitive to imperfections and flaws.status: publishe

    Impregnated fibre bundle test for natural fibres used in composites

    No full text
    International audienceIn this study, the impregnated fibre bundle test, a common method used by carbon and glass fibre manufacturers to determine the properties of fibres used in composites, was adapted for natural fibres and validated by a round robin test on one type of natural fibres, namely flax fibres. Five European laboratories have carried out in parallel the impregnated fibre bundle test, on the same batch of hackled flax (long fibres), to check the applicability and reliability of this modified method on natural fibres. The results were compared to the more traditional single fibre test on elementary fibres. The back-calculated fibre stiffness shows a very low scatter between the five laboratories of less than +/- 5% (59.8 +/- 2.4 GPa, as measured between 0 and 0.1% strain). The fibre ultimate tensile strength of 527 +/- 138 MPa has a higher scatter, compared to stiffness values, as this property is highly sensitive to imperfections and flaws

    Development of ISB 1442, a CD38 and CD47 bispecific biparatopic antibody innate cell modulator for the treatment of multiple myeloma

    No full text
    Abstract Antibody engineering can tailor the design and activities of therapeutic antibodies for better efficiency or other advantageous clinical properties. Here we report the development of ISB 1442, a fully human bispecific antibody designed to re-establish synthetic immunity in CD38+ hematological malignancies. ISB 1442 consists of two anti-CD38 arms targeting two distinct epitopes that preferentially drive binding to tumor cells and enable avidity-induced blocking of proximal CD47 receptors on the same cell while preventing on-target off-tumor binding on healthy cells. The Fc portion of ISB 1442 is engineered to enhance complement dependent cytotoxicity, antibody dependent cell cytotoxicity and antibody dependent cell phagocytosis. ISB 1442 thus represents a CD47-BsAb combining biparatopic targeting of a tumor associated antigen with engineered enhancement of antibody effector function to overcome potential resistance mechanisms that hamper treatment of myeloma with monospecific anti-CD38 antibodies. ISB 1442 is currently in a Phase I clinical trial in relapsed refractory multiple myeloma

    Development of ISB 1442, a CD38 and CD47 bispecific biparatopic antibody innate cell modulator for the treatment of multiple myeloma

    No full text
    Antibody engineering can tailor the design and activities of therapeutic antibodies for better efficiency or other advantageous clinical properties. Here we report the development of ISB 1442, a fully human bispecific antibody designed to re-establish synthetic immunity in CD38+ hematological malignancies. ISB 1442 consists of two anti-CD38 arms targeting two distinct epitopes that preferentially drive binding to tumor cells and enable avidity-induced blocking of proximal CD47 receptors on the same cell while preventing on-target off-tumor binding on healthy cells. The Fc portion of ISB 1442 is engineered to enhance complement dependent cytotoxicity, antibody dependent cell cytotoxicity and antibody dependent cell phagocytosis. ISB 1442 thus represents a CD47-BsAb combining biparatopic targeting of a tumor associated antigen with engineered enhancement of antibody effector function to overcome potential resistance mechanisms that hamper treatment of myeloma with monospecific anti-CD38 antibodies. ISB 1442 is currently in a Phase I clinical trial in relapsed refractory multiple myeloma
    corecore