3,856 research outputs found

    Audio-visual detection benefits in the rat

    Get PDF
    Human psychophysical studies have described multisensory perceptual benefits such as enhanced detection rates and faster reaction times in great detail. However, the neural circuits and mechanism underlying multisensory integration remain difficult to study in the primate brain. While rodents offer the advantage of a range of experimental methodologies to study the neural basis of multisensory processing, rodent studies are still limited due to the small number of available multisensory protocols. We here demonstrate the feasibility of an audio-visual stimulus detection task for rats, in which the animals detect lateralized uni- and multi-sensory stimuli in a two-response forced choice paradigm. We show that animals reliably learn and perform this task. Reaction times were significantly faster and behavioral performance levels higher in multisensory compared to unisensory conditions. This benefit was strongest for dim visual targets, in agreement with classical patterns of multisensory integration, and was specific to task-informative sounds, while uninformative sounds speeded reaction times with little costs for detection performance. Importantly, multisensory benefits for stimulus detection and reaction times appeared at different levels of task proficiency and training experience, suggesting distinct mechanisms inducing these two multisensory benefits. Our results demonstrate behavioral multisensory enhancement in rats in analogy to behavioral patterns known from other species, such as humans. In addition, our paradigm enriches the set of behavioral tasks on which future studies can rely, for example to combine behavioral measurements with imaging or pharmacological studies in the behaving animal or to study changes of integration properties in disease models

    Eccentricity dependent auditory enhancement of visual stimulus detection but not discrimination

    Get PDF
    Sensory perception is enhanced by the complementary information provided by our different sensory modalities and even apparently task irrelevant stimuli in one modality can facilitate performance in another. While perception in general comprises both, the detection of sensory objects as well as their discrimination and recognition, most studies on audio-visual interactions have focused on either of these aspects. However, previous evidence, neuroanatomical projections between early sensory cortices and computational mechanisms suggest that sounds might differentially affect visual detection and discrimination and differentially at central and peripheral retinal locations. We performed an experiment to directly test this by probing the enhancement of visual detection and discrimination by auxiliary sounds at different visual eccentricities and within the same subjects. Specifically, we quantified the enhancement provided by sounds that reduce the overall uncertainty about the visual stimulus beyond basic multisensory co-stimulation. This revealed a general trend for stronger enhancement at peripheral locations in both tasks, but a statistically significant effect only for detection and only at peripheral locations. Overall this suggests that there are topographic differences in the auditory facilitation of basic visual processes and that these may differentially affect basic aspects of visual recognition

    Neural codes formed by small and temporally precise populations in auditory cortex

    Get PDF
    The encoding of sensory information by populations of cortical neurons forms the basis for perception but remains poorly understood. To understand the constraints of cortical population coding we analyzed neural responses to natural sounds recorded in auditory cortex of primates (Macaca mulatta). We estimated stimulus information while varying the composition and size of the considered population. Consistent with previous reports we found that when choosing subpopulations randomly from the recorded ensemble, the average population information increases steadily with population size. This scaling was explained by a model assuming that each neuron carried equal amounts of information, and that any overlap between the information carried by each neuron arises purely from random sampling within the stimulus space. However, when studying subpopulations selected to optimize information for each given population size, the scaling of information was strikingly different: a small fraction of temporally precise cells carried the vast majority of information. This scaling could be explained by an extended model, assuming that the amount of information carried by individual neurons was highly nonuniform, with few neurons carrying large amounts of information. Importantly, these optimal populations can be determined by a single biophysical marker—the neuron's encoding time scale—allowing their detection and readout within biologically realistic circuits. These results show that extrapolations of population information based on random ensembles may overestimate the population size required for stimulus encoding, and that sensory cortical circuits may process information using small but highly informative ensembles

    Additional time-dependent phase in the flavor-conversion formulas

    Get PDF
    In the framework of intermediate wave-packets for treating flavor oscillations, we quantify the modifications which appear when we assume a strictly peaked momentum distribution and consider the second-order corrections in a power series expansion of the energy. By following a sequence of analytic approximations, we point out that an extra time-dependent phase is merely the residue of second-order corrections. Such phase effects are usually ignored in the relativistic wave-packet treatment, but they do not vanish non-relativistically and can introduce some small modifications to the oscillation pattern even in the ultra-relativistic limit.Comment: 9 pages, 3 figure

    Flavor and chiral oscillations with Dirac wave packets

    Get PDF
    We report about recent results on Dirac wave packets in the treatment of neutrino flavor oscillation where the initial localization of a spinor state implies an interference between positive and negative energy components of mass-eigenstate wave packets. A satisfactory description of fermionic particles requires the use of the Dirac equation as evolution equation for the mass-eigenstates. In this context, a new flavor conversion formula can be obtained when the effects of chiral oscillation are taken into account. Our study leads to the conclusion that the fermionic nature of the particles, where chiral oscillations and the interference between positive and negative frequency components of mass-eigenstate wave packets are implicitly assumed, modifies the standard oscillation probability. Nevertheless, for ultra-relativistic particles and sharply peaked momentum distributions, we can analytically demonstrate that these modifications introduce correction factors proportional to (m12/p0) square which are practically un-detectable by any experimental analysisComment: 16 pages, 2 figure

    Energy and Momentum of Oscillating Neutrinos

    Get PDF
    It is shown that Lorentz invariance implies that in general flavor neutrinos in oscillation experiments are superpositions of massive neutrinos with different energies and different momenta. It is also shown that for each process in which neutrinos are produced there is either a Lorentz frame in which all massive neutrinos have the same energy or a Lorentz frame in which all massive neutrinos have the same momentum. In the case of neutrinos produced in two-body decay processes, there is a Lorentz frame in which all massive neutrinos have the same energy.Comment: 6 pages, no figure

    Beta decays with momentum space Majorana spinors

    Full text link
    We construct and apply to beta decays a truly neutral local quantum field that is entirely based upon momentum space Majorana spinors. We make the observation that theory with momentum space Majorana spinors of real C parities is equivalent to Dirac's theory. For imaginary C parities, the neutrino mass can drop from the single beta decay trace and reappear in 0\nu \beta \beta, a curious and in principle experimentally testable signature for a non-trivial impact of Majorana framework in experiments with polarized sources.Comment: 7 pages, 1 figure; needs svjour.cls, svepj.cl

    Interactive and automated application of virtual microscopy

    Get PDF
    Virtual microscopy can be applied in an interactive and an automated manner. Interactive application is performed in close association to conventional microscopy. It includes image standardization suitable to the performance of an individual pathologist such as image colorization, white color balance, or individual adjusted brightness. The steering commands have to include selection of wanted magnification, easy navigation, notification, and simple measurements (distances, areas). The display of the histological image should be adjusted to the physical limits of the human eye, which are determined by a view angle of approximately 35 seconds. A more sophisticated performance should include acoustic commands that replace the corresponding visual commands. Automated virtual microscopy includes so-called microscopy assistants which can be defined similar to the developed assistants in computer based editing systems (Microsoft Word, etc.). These include an automated image standardization and correction algorithms that excludes images of poor quality (for example uni-colored or out-of-focus images), an automated selection of the most appropriate field of view, an automated selection of the best magnification, and finally proposals of the most probable diagnosis. A quality control of the final diagnosis, and feedback to the laboratory determine the proposed system. The already developed tools of such a system are described in detail, as well as the results of first trials. In order to enhance the speed of such a system, and to allow further user-independent development a distributed implementation probably based upon Grid technology seems to be appropriate. The advantages of such a system as well as the present pathology environment and its expectations will be discussed in detail

    Virtual slides in peer reviewed, open access medical publication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Application of virtual slides (VS), the digitalization of complete glass slides, is in its infancy to be implemented in routine diagnostic surgical pathology and to issues that are related to tissue-based diagnosis, such as education and scientific publication.</p> <p>Approach</p> <p>Electronic publication in Pathology offers new features of scientific communication in pathology that cannot be obtained by conventional paper based journals. Most of these features are based upon completely open or partly directed interaction between the reader and the system that distributes the article. One of these interactions can be applied to microscopic images allowing the reader to navigate and magnify the presented images. VS and interactive Virtual Microscopy (VM) are a tool to increase the scientific value of microscopic images.</p> <p>Technology and Performance</p> <p>The open access journal Diagnostic Pathology <url>http://www.diagnosticpathology.org</url> has existed for about five years. It is a peer reviewed journal that publishes all types of scientific contributions, including original scientific work, case reports and review articles. In addition to digitized still images the authors of appropriate articles are requested to submit the underlying glass slides to an institution (DiagnomX.eu, and Leica.com) for digitalization and documentation. The images are stored in a separate image data bank which is adequately linked to the article. The normal review process is not involved. Both processes (peer review and VS acquisition) are performed contemporaneously in order to minimize a potential publication delay. VS are not provided with a DOI index (digital object identifier). The first articles that include VS were published in March 2011.</p> <p>Results and Perspectives</p> <p>Several logistic constraints had to be overcome until the first articles including VS could be published. Step by step an automated acquisition and distribution system had to be implemented to the corresponding article. The acceptance of VS by the reader is high as well as by the authors. Of specific value are the increased confidence to and reputation of authors as well as the presented information to the reader. Additional associated functions such as access to author-owned related image collections, reader-controlled automated image measurements and image transformations are in preparation.</p> <p>Virtual Slides</p> <p>The virtual slide(s) for this article can be found here: <url>http://www.diagnosticpathology.diagnomx.eu/vs/1232133347629819</url>.</p

    Lensing magnification of supernovae in the GOODS-fields

    Full text link
    Gravitational lensing of high-redshift supernovae is potentially an important source of uncertainty when deriving cosmological parameters from the measured brightness of Type Ia supernovae, especially in deep surveys with scarce statistics. Photometric and spectroscopic measurements of foreground galaxies along the lines-of-sight of 33 supernovae discovered with the Hubble Space Telescope, both core-collapse and Type Ia, are used to model the magnification probability distributions of the sources. Modelling galaxy halos with SIS or NFW-profiles and using M/L scaling laws provided by the Faber-Jackson and Tully-Fisher relations, we find clear evidence for supernovae with lensing (de)magnification. However, the magnification distribution of the Type Ia supernovae used to determine cosmological distances matches very well the expectations for an unbiased sample, i.e.their mean magnification factor is consistent with unity. Our results show that the lensing distortions of the supernova brightness can be well understood for the GOODS sample and that correcting for this effect has a negligible impact on the derived cosmological parameters.Comment: 22 pages, 9 figures, accepted for publication by Ap
    • 

    corecore