16 research outputs found

    An Autonomous Circadian Clock in the Inner Mouse Retina Regulated by Dopamine and GABA

    Get PDF
    The influence of the mammalian retinal circadian clock on retinal physiology and function is widely recognized, yet the cellular elements and neural regulation of retinal circadian pacemaking remain unclear due to the challenge of long-term culture of adult mammalian retina and the lack of an ideal experimental measure of the retinal circadian clock. In the current study, we developed a protocol for long-term culture of intact mouse retinas, which allows retinal circadian rhythms to be monitored in real time as luminescence rhythms from a PERIOD2::LUCIFERASE (PER2::LUC) clock gene reporter. With this in vitro assay, we studied the characteristics and location within the retina of circadian PER2::LUC rhythms, the influence of major retinal neurotransmitters, and the resetting of the retinal circadian clock by light. Retinal PER2::LUC rhythms were routinely measured from whole-mount retinal explants for 10 d and for up to 30 d. Imaging of vertical retinal slices demonstrated that the rhythmic luminescence signals were concentrated in the inner nuclear layer. Interruption of cell communication via the major neurotransmitter systems of photoreceptors and ganglion cells (melatonin and glutamate) and the inner nuclear layer (dopamine, acetylcholine, GABA, glycine, and glutamate) did not disrupt generation of retinal circadian PER2::LUC rhythms, nor did interruption of intercellular communication through sodium-dependent action potentials or connexin 36 (cx36)-containing gap junctions, indicating that PER2::LUC rhythms generation in the inner nuclear layer is likely cell autonomous. However, dopamine, acting through D1 receptors, and GABA, acting through membrane hyperpolarization and casein kinase, set the phase and amplitude of retinal PER2::LUC rhythms, respectively. Light pulses reset the phase of the in vitro retinal oscillator and dopamine D1 receptor antagonists attenuated these phase shifts. Thus, dopamine and GABA act at the molecular level of PER proteins to play key roles in the organization of the retinal circadian clock

    Excessive HDAC activation is critical for neurodegeneration in the rd1 mouse

    Get PDF
    Inherited retinal degenerations, collectively termed retinitis pigmentosa (RP), constitute one of the leading causes of blindness in the developed world. RP is at present untreatable and the underlying neurodegenerative mechanisms are unknown, even though the genetic causes are often established. Acetylation and deacetylation of histones, carried out by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively, affects cellular division, differentiation, death and survival. We found acetylation of histones and probably other proteins to be dramatically reduced in degenerating photoreceptors in the rd1 human homologous mouse model for RP. Using a custom developed in situ HDAC activity assay, we show that overactivation of HDAC classes I/II temporally precedes photoreceptor degeneration. Moreover, pharmacological inhibition of HDACs I/II activity in rd1 organotypic retinal explants decreased activity of poly-ADP-ribose-polymerase and strongly reduced photoreceptor cell death. These findings highlight the importance of protein acetylation for photoreceptor cell death and survival and propose certain HDAC classes as novel targets for the pharmacological intervention in RP

    Divergent Roles of Clock Genes in Retinal and Suprachiasmatic Nucleus Circadian Oscillators

    Get PDF
    The retina is both a sensory organ and a self-sustained circadian clock. Gene targeting studies have revealed that mammalian circadian clocks generate molecular circadian rhythms through coupled transcription/translation feedback loops which involve 6 core clock genes, namely Period (Per) 1 and 2, Cryptochrome (Cry) 1 and 2, Clock, and Bmal1 and that the roles of individual clock genes in rhythms generation are tissue-specific. However, the mechanisms of molecular circadian rhythms in the mammalian retina are incompletely understood and the extent to which retinal neural clocks share mechanisms with the suprachiasmatic nucleus (SCN), the central neural clock, is unclear. In the present study, we examined the rhythmic amplitude and period of real-time bioluminescence rhythms in explants of retina from Per1-, Per2-, Per3-, Cry1-, Cry2-, and Clock-deficient mice that carried transgenic PERIOD2::LUCIFERASE (PER2::LUC) or Period1::luciferase (Per1::luc) circadian reporters. Per1-, Cry1- and Clock-deficient retinal and SCN explants showed weakened or disrupted rhythms, with stronger effects in retina compared to SCN. Per2, Per3, and Cry2 were individually dispensable for sustained rhythms in both tissues. Retinal and SCN explants from double knockouts of Cry1 and Cry2 were arrhythmic. Gene effects on period were divergent with reduction in the number of Per1 alleles shortening circadian period in retina, but lengthening it in SCN, and knockout of Per3 substantially shortening retinal clock period, but leaving SCN unaffected. Thus, the retinal neural clock has a unique pattern of clock gene dependence at the tissue level that it is similar in pattern, but more severe in degree, than the SCN neural clock, with divergent clock gene regulation of rhythmic period

    Spatial Distribution of the Pathways of Cholesterol Homeostasis in Human Retina

    Get PDF
    The retina is a light-sensitive tissue lining the inner surface of the eye and one of the few human organs whose cholesterol maintenance is still poorly understood. Challenges in studies of the retina include its complex multicellular and multilayered structure; unique cell types and functions; and specific physico-chemical environment.We isolated specimens of the neural retina (NR) and underlying retinal pigment epithelium (RPE)/choroid from six deceased human donors and evaluated them for expression of genes and proteins representing the major pathways of cholesterol input, output and regulation. Eighty-four genes were studied by PCR array, 16 genes were assessed by quantitative real time PCR, and 13 proteins were characterized by immunohistochemistry. Cholesterol distribution among different retinal layers was analyzed as well by histochemical staining with filipin. Our major findings pertain to two adjacent retinal layers: the photoreceptor outer segments of NR and the RPE. We demonstrate that in the photoreceptor outer segments, cholesterol biosynthesis, catabolism and regulation via LXR and SREBP are weak or absent and cholesterol content is the lowest of all retinal layers. Cholesterol maintenance in the RPE is different, yet the gene expression also does not appear to be regulated by the SREBPs and varies significantly among different individuals.This comprehensive investigation provides important insights into the relationship and spatial distribution of different pathways of cholesterol input, output and regulation in the NR-RPE region. The data obtained are important for deciphering the putative link between cholesterol and age-related macular degeneration, a major cause of irreversible vision loss in the elderly

    Supplementary Material for: Comprehensive Genomic Characterization in Ovarian Low-Grade and chemosensitive and chemoresistant High-Grade Serous Carcinomas

    No full text
    Introduction: Genomic characterization of serous ovarian carcinoma (SOC), which includes low-grade serous carcinoma (LGSC) and high-grade serous carcinoma (HGSC), remains necessary to improve efficacy of platinum-based chemotherapy. The aim was to investigate the genomic variations in these SOC groups, also in relation to chemoresponse. Methods: 45 samples SOC were retrospectively analyzed by Next Generation Sequencing (NGS) on DNA/RNA extracts from formalin-fixed, paraffin-embedded (FFPE) tumor samples obtained at diagnosis. HGSCs were classified as platinum-resistant and platinum-sensitive. Results: In the LGSC group, 44% of the carcinomas had mutually exclusive variants in the RAS/RAF pathway, while additional likely oncogenic variants in the CDKN2A, SMARCA4 and YAP1 genes were observed in the remaining LGSCs. Tumor mutation burden (TMB) was significantly lower in the intrinsically chemoresistant LGSC group than in the HGSC group. In the HGSC cohort, TP53 variants were found in 90% and homologous recombination repair (HRR) pathway variants in 41% of the neoplasms. HGSCs of the chemoresistant group without classic mutations in the HRR pathway were characterized by additional variants in FGFR2 and with a FGFR3::TACC3 fusion. In addition, HGSCs showed MYC, CCNE1 and AKT2 gains that were almost exclusively observed in the chemosensitive HGSC group. Conclusions: These results suggest that very low TMB and MYC, CCNE1 and AKT2 gains in SOC patients may be biomarkers related to platinum treatment efficacy. Thorough genomic characterization of SOCs prior to treatment might lead to more specific platinum-based chemotherapy therapy strategies

    The Resveratrol Prodrug JC19 Delays Retinal Degeneration in rd10 Mice

    No full text
    It has been reported that resveratrol (RES) has a therapeutic effect in different neurodegenerative and ocular diseases. However, RES is rapidly eliminated from the organism, and high doses need to be administered resulting in potential toxic side effects. We hypothesized that a RES prodrug such as 3,4′-diglucosyl resveratrol (JC19) would reduce RES metabolism to produce a neuroprotective effect. Here, we have examined the protective effect of JC19 in an experimental mouse model of autosomal recessive RP. Rd10 mice at postnatal day 13 (P13) were subretinally injected with vehicle and two different doses of JC19. Electroretinogram (ERG) and histological evaluation were performed 15 days after injections. The amplitude of a- and b-waves was quantified in ERG recordings, and the number of photoreceptor nuclei in the outer nuclear layer was counted. In addition, the mouse retinas were immunostained with anti-rhodopsin antibodies. JC19 treatment delayed the loss of rod photoreceptor in rd10 mice, maintaining the expression of rhodopsin and preserving their electrical responses to light stimuli. The exact mechanism by which RES delays retinal degeneration in rd10 mice remains to be elucidated, but Sirtuin 1 activation could be one of the key molecular pathways involved in its neuroprotective effect.This study was supported by ISCIII grants (Miguel Servet-I, CP15/00071) and co-funded by the European Regional Development Fund (ERDF), Andalusian Regional Government (FQM-7316)
    corecore