1,570,471 research outputs found

    Elastic collapse in disordered isostatic networks

    Full text link
    Isostatic networks are minimally rigid and therefore have, generically, nonzero elastic moduli. Regular isostatic networks have finite moduli in the limit of large sizes. However, numerical simulations show that all elastic moduli of geometrically disordered isostatic networks go to zero with system size. This holds true for positional as well as for topological disorder. In most cases, elastic moduli decrease as inverse power-laws of system size. On directed isostatic networks, however, of which the square and cubic lattices are particular cases, the decrease of the moduli is exponential with size. For these, the observed elastic weakening can be quantitatively described in terms of the multiplicative growth of stresses with system size, giving rise to bulk and shear moduli of order exp{-bL}. The case of sphere packings, which only accept compressive contact forces, is considered separately. It is argued that these have a finite bulk modulus because of specific correlations in contact disorder, introduced by the constraint of compressivity. We discuss why their shear modulus, nevertheless, is again zero for large sizes. A quantitative model is proposed that describes the numerically measured shear modulus, both as a function of the loading angle and system size. In all cases, if a density p>0 of overconstraints is present, as when a packing is deformed by compression, or when a glass is outside its isostatic composition window, all asymptotic moduli become finite. For square networks with periodic boundary conditions, these are of order sqrt{p}. For directed networks, elastic moduli are of order exp{-c/p}, indicating the existence of an "isostatic length scale" of order 1/p.Comment: 6 pages, 6 figues, to appear in Europhysics Letter

    High Levels of Circularly Polarized Emission from the Radio Jet in NGC 1275 (3C 84)

    Full text link
    We present multi-frequency, high resolution VLBA circular polarization images of the radio source 3C 84 in the center of NGC 1275. Our images reveal a complex distribution of circular polarization in the inner parsec of the radio jet, with local levels exceeding 3% polarization, the highest yet detected with VLBI techniques. The circular polarization changes sign along the jet, making 3C 84 also the first radio jet to show both signs of circular polarization simultaneously. The spectrum and changing sign of the circular polarization indicate that it is unlikely to be purely intrinsic to the emitted synchrotron radiation. The Faraday conversion process makes a significant and perhaps dominant contribution to the circular polarization, and the observed spectrum suggests the conversion process is near saturation. The sign change in the circular polarization along the jet may result from this saturation or may be due to a change in magnetic field order after an apparent bend in the jet. From the small spatial scales probed here, ~ 0.15 pc, and the comparably high levels of circular polarization inferred for the intra-day variable source PKS 1519-273, we suggest a connection between small spatial scales and efficient production of circular polarization.Comment: 4 pages, accepted in ApJ Letter

    Influence of moving breathers on vacancies migration

    Get PDF
    A vacancy defect is described by a Frenkel--Kontorova model with a discommensuration. This vacancy can migrate when interacts with a moving breather. We establish that the width of the interaction potential must be larger than a threshold value in order that the vacancy can move forward. This value is related to the existence of a breather centred at the particles adjacent to the vacancy.Comment: 11 pages, 10 figure

    Tuning the thermal conductance of molecular junctions with interference effects

    Full text link
    We present an \emph{ab initio} study of the role of interference effects in the thermal conductance of single-molecule junctions. To be precise, using a first-principles transport method based on density functional theory, we analyze the coherent phonon transport in single-molecule junctions based on several benzene and oligo-phenylene-ethynylene derivatives. We show that the thermal conductance of these junctions can be tuned via the inclusion of substituents, which induces destructive interference effects and results in a decrease of the thermal conductance with respect to the unmodified molecules. In particular, we demonstrate that these interference effects manifest as antiresonances in the phonon transmission, whose energy positions can be controlled by varying the mass of the substituents. Our work provides clear strategies for the heat management in molecular junctions and more generally in nanostructured metal-organic hybrid systems, which are important to determine, how these systems can function as efficient energy-conversion devices such as thermoelectric generators and refrigerators

    Genetic Variation of MtDNA Cytochrome Oxidase Subunit I (COI) in Local Swamp Buffaloes in Indonesia

    Full text link
    The objective of this research was to identify genetic variation of mitochondria DNA especially in cytochrome oxidase subunit I (COI) among population of Indonesian buffaloes. Samples of swamp buffaloes were collected from Aceh (n= 3), North Sumatra (n= 3), Riau (n= 3), Banten (n= 3), Central Java (n= 3), West Nusa Tenggara (n= 3) and South Sulawesi (n= 3), and riverine buffalo from North Sumatra (n= 1) out of group for comparison. Sequence of COI was analyzed using MEGA 5.10 software with neighbor-joining method kimura 2-parameter model to reconstruct phylogeny tree. The result showed that three haplotypes for swamp buffalo and one haplotype for riverine buffalo in Indonesia resulted from 41 polymorphic sites. This finding showed that the COI gene could be considered as a marker to distinguish among swamp buffaloes in Indonesia

    Workpiece positioning vise

    Get PDF
    A pair of jaw assemblies simultaneously driven in opposed reciprocation by a single shaft has oppositely threaded sections to automatically center delicate or brittle workpieces such as lithium fluoride crystal beneath the blade of a crystal cleaving machine. Both jaw assemblies are suspended above the vise bed by a pair of parallel guide shafts attached to the vise bed. Linear rolling bearings, fitted around the guide shafts and firmly held by opposite ends of the jaw assemblies, provide rolling friction between the guide shafts and the jaw assemblies. A belleville washer at one end of the drive shaft and thrust bearings at both drive shaft ends hold the shaft in compression between the vise bed, thereby preventing wobble of the jaw assemblies due to wear between the shaft and vise bed

    Dynamic cyclic performance of phenol-formaldehyde resin derived carbons for pre-combustion CO2 capture : An experimental study

    Get PDF
    Acknowledgments This work was carried out with financial support from the Spanish MINECO (Project ENE2011-23467), co-financed by the European Regional Development Fund (ERDF).Peer reviewedPublisher PD

    Electrooptical scanning of film

    Get PDF
    Scan-in scan-out flying spot scanning system recognizes three different levels of transmissivity within a frame. It selectively acts on these levels either to intensify the illumination or to extend the duration of the illuminating spot to any picture element. Thus it improves the ratio of signal to tube noise in the cameras output

    Structural and electronic properties of grain boundaries in graphite: Planes of periodically distributed point defects

    Get PDF
    We report on scanning tunneling microscopy and spectroscopy of grain boundaries in highly oriented pyrolytic graphite. Grain boundaries showed a periodic structure and an enhanced charge density compared to the bare graphite surface. Two possible periodic structures have been observed along grain boundaries. A geometrical model producing periodically distributed point defects on the basal plane of graphite has been proposed to explain the structure of grain boundaries. Scanning tunneling spectroscopy on grain boundaries revealed two strong localized states at -0.3 V and 0.4 V.Comment: 5 pages, 5 figure
    corecore