18,937 research outputs found

    Modeling Network Populations via Graph Distances

    Get PDF
    This article introduces a new class of models for multiple networks. The core idea is to parametrize a distribution on labelled graphs in terms of a Fr\'{e}chet mean graph (which depends on a user-specified choice of metric or graph distance) and a parameter that controls the concentration of this distribution about its mean. Entropy is the natural parameter for such control, varying from a point mass concentrated on the Fr\'{e}chet mean itself to a uniform distribution over all graphs on a given vertex set. We provide a hierarchical Bayesian approach for exploiting this construction, along with straightforward strategies for sampling from the resultant posterior distribution. We conclude by demonstrating the efficacy of our approach via simulation studies and two multiple-network data analysis examples: one drawn from systems biology and the other from neuroscience.Comment: 33 pages, 8 figure

    Experimental Studies of NaCs

    Get PDF
    We present experimental studies of excited electronic states of the NaCs molecule that are currently underway in our laboratory. The optical-optical double resonance method is used to obtain Doppler-free excitation spectra for several excited states. These data are being used to obtain RydbergKlein-Rees (RKR) or Inverse Perturbation Approach (IPA) potential curves for these states. We are also trying to map the bound portion of the 1(a) 3Σ + potential using resolved laser-induced fluorescence and Fourier transform spectroscopy to record transitions into the shallow well. Bound-free spectra from single ro-vibrational levels of electronically excited states to the repulsive wall of the 1(a) 3Σ + state are also being recorded. Using the previously determined excited state potentials, we can fit the repulsive wall of the 1(a) 3Σ + state to reproduce the experimental spectra using LeRoy’s BCONT program. A slightly modified version of BCONT will also be used to fit the relative transition dipole moments, µe(R), as a function of internuclear separation R, for the various bound-free electronic transitions

    SETI science working group report

    Get PDF
    This report covers the initial activities and deliberations of a continuing working group asked to assist the SETI Program Office at NASA. Seven chapters present the group's consensus on objectives, strategies, and plans for instrumental R&D and for a microwave search for extraterrestrial in intelligence (SETI) projected for the end of this decade. Thirteen appendixes reflect the views of their individual authors. Included are discussions of the 8-million-channel spectrum analyzer architecture and the proof-of-concept device under development; signal detection, recognition, and identification on-line in the presence of noise and radio interference; the 1-10 GHz sky survey and the 1-3 GHz targeted search envisaged; and the mutual interests of SETI and radio astronomy. The report ends with a selective, annotated SETI reading list of pro and contra SETI publications

    Microwave microstrip resonator measurements of Y1Ba2Cu3O(7-x) and Bi2Sr2Ca1Cu2O(8-y) thin films

    Get PDF
    Radio frequency (RF) surface resistance measurement experiments on high T(sub c) thin films were performed. The method uses a microstrip resonator comprising a top gold conductor strip, an alumina dielectric layer, and a separate superconductivity ground plane. The surface resistance of the superconducting ground plane can be determined, with reference to a gold calibration standard, from the measured quality factor of the half-wave resonator. Initial results near 7 GHz over the temperature range from 25 to 300 K are presented for YBa2Cu3O(7-x) and Bi2Sr2CaCu2O(8-y) thin film samples deposited by an electron beam flash evaporation process. The RF surface resistance at 25 K for both materials in these samples was found to be near 25 milliohms

    Collisional Transfer of Population and Orientation in NaK

    Get PDF
    We report current work to study transfer of population and orientation in collisions of NaK molecules with argon and potassium atoms using polarization labeling (PL) and laser- induced fluorescence (LIF) spectroscopy. In the PL experiment, a circularly polarized pump laser excites a specific NaK A1Σ +(v 0=16, J 0 ) ← X1Σ +(v 00=0, J 0 ± 1) transition, creating an orientation (non-uniform MJ0 level distribution) in both levels. The linearly polarized probe laser is scanned over various 31Π(v, J 0±1) ← A1Σ +(v 0=16, J 0 ) transitions. The probe laser passes through a crossed linear polarizer before detection, and signal is recorded if the probe laser polarization has been modified by the vapor (which occurs when it comes into resonance with an oriented level). Using both spectroscopic methods, analysis of weak collisional satellite lines adjacent to these directly populated lines, as a function of argon buffer gas pressure and cell temperature, allows us to discern separately the effects collisions with argon atoms and potassium atoms have on the population and orientation of the molecule. In addition, code has been written which provides a theoretical analysis of the process, through a solution of the density matrix equations of motion for the system
    corecore