Providence College DigitalCommons@Providence

Physics Faculty Publications

Physics

5-22-2009

Experimental Studies of NaCs

Seth T. Ashman Providence College, sashman@providence.edu

C. M. Wolfe Lehigh University

J. P. Huennekens Lehigh University

Follow this and additional works at: http://digitalcommons.providence.edu/physics_fac Part of the <u>Atomic, Molecular and Optical Physics Commons</u>

Ashman, Seth T.; Wolfe, C. M.; and Huennekens, J. P., "Experimental Studies of NaCs" (2009). *Physics Faculty Publications*. 8. http://digitalcommons.providence.edu/physics_fac/8

This Conference Proceeding is brought to you for free and open access by the Physics at DigitalCommons@Providence. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of DigitalCommons@Providence. For more information, please contact mcaprio1@providence.edu.

Abstract

We present experimental studies of excited electronic states of the NaCs molecule that are currently underway in our laboratory. The optical-optical double resonance method is used to obtain Doppler-free excitation spectra for several excited states. These data are being used to obtain Rydberg-Klein-Rees (RKR) or Inverse Perturbation Approach (IPA) potential curves for these states. Bound-free spectra from single ro-vibrational levels of electronically excited states to the repulsive wall of the $1(a)^{3}\Sigma^{+}$ state are also being recorded. Using the previously determined excited state potentials, we can fit the repulsive wall of the $1(a)^{3}\Sigma^{+}$ state to reproduce the experimental spectra using LeRoy's BCONT program. A slightly modified version of BCONT will also be used to fit the relative transition dipole moments, $\mu_e(\mathbf{R})$, as a function of internuclear separation, R, for the various bound-free electronic transitions.

Why Study NaCs?

LiCs	6.3
NaK	2.73
NaRb	3.1
NaCs	4.75
KRb	0.2
KCs	2.58
RbCs	2.39

Large spin-orbit interactions:

Spin-Orbit Splitting of Alkali Atoms

Atomic symbol Splitting (cm^-1) 0.335 17.196 57 71 273.595 554.0393

1686.589

Goals

Internuclear Separation, R (Angstroms)

Hund's case c)

 $\Delta\Omega = 0, \pm 1$

- Map excited state potentials
- Map repulsive wall of the $a^3\Sigma^+$ state
- Determine transition dipole moment functions, $\mu_{e}(\mathbf{R})$

24000

• Study collisional energy transfer

 $\mu_{ik} \propto \int \chi_i^{vib}(R) \mu_{ei}(R) \chi_k^{vib}(R) dR \quad \text{with} \quad \mu_{ei}(R) = \int \phi_i^*(\bar{r}_j, R) \hat{\mu}_{ei} \phi_k(\bar{r}_j, R) d\tau_{ei}.$

Therefore, $\mu_{el}(R)$ can be obtained by fitting the intensities of bound-bound emission lines or

bound-free emission continua to experimental spectra.

• Measure spin-orbit coupling interaction parameters as functions of R

• Study hyperfine structure					
Transition Dipole Mor	ment and Select	ion Rules			
Transition Dipole Moment Functions					
Emission intensity for bound-bound or bound-free transitions is proportional to the square of the dipole matrix element	Selection Rules for Electr	onic Transitions			
$I_{emission}^{ik} = N_i h v_{ik} A_{ik} \qquad \text{with} \qquad A_{ik} = \frac{8\pi^2 v_{ik}^3}{3\varepsilon_0 c^3 \hbar} \left \bar{\mu}_{ik} \right ^2.$	$\Delta v = anything$				
Here, $\bar{\mu}_{ik} = \iint \Psi_i^* \hat{\mu} \Psi_k d\tau_{el} d\tau_N$ where	$\Delta J = 0, \pm 1$	with restriction that $\Delta J = 0$ forbidden for $\Sigma \leftrightarrow \Sigma$ transitions			
$\hat{\mu} = -e \sum_{j} \vec{r}_{j} + Z_{A} \vec{R}_{A} + Z_{B} \vec{R}_{B} = \hat{\mu}_{el} + \hat{\mu}_{N} \qquad \text{is the dipole operator.}$					
The total wave function can be separated into electronic and nuclear parts, and the nuclear part can be further separated into angular (rotational) and radial (vibrational) terms:	Hund's case a)				
$\Psi(\vec{r}_j, \vec{R}) = \phi^{el}(\vec{r}_j, R) \cdot \psi^N(\vec{R}) = \phi^{el}(\vec{r}_j, R) \frac{\chi^{mo}(R)}{R} \phi^{rot}(\theta, \phi).$	$\Delta S = 0$				
(Note that for bound-free transitions, the final state vibrational function must be replaced by a continuum function.)	$\Delta \Lambda = 0, \pm 1$				
Thus the dipole matrix element becomes: $\bar{\mu}_{ik} = \int \int (\phi_i^{el})^* (\psi_i^N)^* (\hat{\mu}_{el} + \hat{\mu}_N) \phi_k^{el} \psi_k^N d\tau_{el} d\tau_N$	$\Delta\Omega = 0, \pm 1$				
For a transition between two electronic states, initial state <i>i</i> and final state <i>k</i> , the nuclear term is zero, the angular terms of the $\hat{\mu}_{el}$ integral lead to selection rules on <i>J</i> , and the radial term leads					

Experimental Studies of NaCs

• Then fixing the pump and scanning the probe allows the excited state levels to be labeled. Again collisional satellite lines allow the upper state level energies for a large number of rotational levels to be accurately determined relative to $A^{1}\Sigma^{+}(v', J')$ levels.

S. Ashman, C. M. Wolfe, J. Huennekens

Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015

		2102010 012	-1000	
	Y(1,0)	61.18 ± 0.55	58.6	
	Y(2,0)	-0.270 ± 0.013	-	
	Y(0,1)	0.0398 ± 0.0020	0.0394	
	Y(1,1)	$-(2.4 \pm 0.95) \ge 10^{-4}$	-	
	Y(0,2)	-2.0279 x 10 ⁻⁸ (fixed in fit)	_	
Fit using DParfit program				

R. J. LeRoy, DParFit 3.3: A Computer Program for Fitting Multi-Isotopologue Diatomic Molecule Spectra, University of Waterloo Chemical Physics Research Report CP-653 (2001) * * Statistical error only *** M. Korek et al., JCP 126, 124313 (2007)

Therefore, the hyperfine structure might only be observable at lower J values than those we have studied.