470 research outputs found

    Slowly varying control parameters, delayed bifurcations and the stability of spikes in reaction-diffusion systems

    Full text link
    We present three examples of delayed bifurcations for spike solutions of reaction-diffusion systems. The delay effect results as the system passes slowly from a stable to an unstable regime, and was previously analysed in the context of ODE's in [P.Mandel, T.Erneux, J.Stat.Phys, 1987]. It was found that the instability would not be fully realized until the system had entered well into the unstable regime. The bifurcation is said to have been "delayed" relative to the threshold value computed directly from a linear stability analysis. In contrast, we analyze the delay effect in systems of PDE's. In particular, for spike solutions of singularly perturbed generalized Gierer-Meinhardt (GM) and Gray-Scott (GS) models, we analyze three examples of delay resulting from slow passage into regimes of oscillatory and competition instability. In the first example, for the GM model on the infinite real line, we analyze the delay resulting from slowly tuning a control parameter through a Hopf bifurcation. In the second example, we consider a Hopf bifurcation on a finite one-dimensional domain. In this scenario, as opposed to the extrinsic tuning of a system parameter through a bifurcation value, we analyze the delay of a bifurcation triggered by slow intrinsic dynamics of the PDE system. In the third example, we consider competition instabilities of the GS model triggered by the extrinsic tuning of a feed rate parameter. In all cases, we find that the system must pass well into the unstable regime before the onset of instability is fully observed, indicating delay. We also find that delay has an important effect on the eventual dynamics of the system in the unstable regime. We give analytic predictions for the magnitude of the delays as obtained through analysis of certain explicitly solvable nonlocal eigenvalue problems. The theory is confirmed by numerical solutions of the full PDE systems.Comment: 31 pages, 20 figures, submitted to Physica D: Nonlinear Phenomen

    Weakly Nonlinear Analysis of Vortex Formation in a Dissipative Variant of the Gross-Pitaevskii Equation

    Get PDF
    For a dissipative variant of the two-dimensional Gross-Pitaevskii equation with a parabolic trap under rotation, we study a symmetry breaking process that leads to the formation of vortices. The first symmetry breaking leads to the formation of many small vortices distributed uniformly near the Thomas-Fermi radius. The instability occurs as a result of a linear instability of a vortex-free steady state as the rotation is increased above a critical threshold. We focus on the second subsequent symmetry breaking, which occurs in the weakly nonlinear regime. At slightly above threshold, we derive a one dimensional amplitude equation that describes the slow evolution of the envelope of the initial instability. We show that the mechanism responsible for initiating vortex formation is a modulational instability of the amplitude equation. We also illustrate the role of dissipation in the symmetry breaking process. All analyses are confirmed by detailed numerical computations

    On the stability of the exact solutions of the dual-phase lagging model of heat conduction

    Get PDF
    The dual-phase lagging (DPL) model has been considered as one of the most promising theoretical approaches to generalize the classical Fourier law for heat conduction involving short time and space scales. Its applicability, potential, equivalences, and possible drawbacks have been discussed in the current literature. In this study, the implications of solving the exact DPL model of heat conduction in a three-dimensional bounded domain solution are explored. Based on the principle of causality, it is shown that the temperature gradient must be always the cause and the heat flux must be the effect in the process of heat transfer under the dual-phase model. This fact establishes explicitly that the single- and DPL models with different physical origins are mathematically equivalent. In addition, taking into account the properties of the Lambert W function and by requiring that the temperature remains stable, in such a way that it does not go to infinity when the time increases, it is shown that the DPL model in its exact form cannot provide a general description of the heat conduction phenomena

    Some analytical models of radiating collapsing spheres

    Get PDF
    We present some analytical solutions to the Einstein equations, describing radiating collapsing spheres in the diffusion approximation. Solutions allow for modeling physical reasonable situations. The temperature is calculated for each solution, using a hyperbolic transport equation, which permits to exhibit the influence of relaxational effects on the dynamics of the system.Comment: 17 pages Late

    Optimal mixing of buoyant jets and plumes in stratified fluids: Theory and experiments

    Get PDF
    The influence of ambient fluid stratification on buoyant miscible jets and plumes is studied theoretically and experimentally. Given a fixed set of jet/plume parameters, and an ambient fluid stratification sandwiched between top and bottom homogeneous densities, a theoretical criterion is identified to show how step-like density profiles constitute the most effective mixers within a broad class of stable density transitions. This is assessed both analytically and experimentally, respectively by establishing rigorous a priori estimates on generalized Morton-Taylor-Turner (MTT) models (Morton et al., Proc. R. Soc. Lond. A, vol. 234, 1956, pp. 1-23; Fischer et al., Mixing in Inland and Coastal Waters. Academic, 1979), and by studying a critical phenomenon determined by the distance between the jet/plume release height with respect to the depth of the ambient density transition. For fluid released sufficiently close to the background density transition, the buoyant jet fluid escapes and rises indefinitely. For fluid released at locations lower than a critical depth, the buoyant fluid stops rising and is trapped indefinitely. A mathematical formulation providing rigorous estimates on MTT models is developed along with nonlinear jump conditions and an exact critical-depth formula that is in good quantitative agreement with the experiments. Our mathematical analysis provides rigorous justification for the critical trapping/escaping criteria, first presented in Caulfield & Woods (J. Fluid Mech., vol. 360, 1998, pp. 229-248), within a class of algebraic density decay rates. Further, the step-like background stratification is shown to be the most efficient mixing profile amongst a broad family of stably stratified profiles sharing the same density transition within a fixed distance. Finally, the analysis uncovers surprising differences between the Gaussian and top-hat profile closures concerning initial mixing of the jet and ambient fluid

    Lack of phenotypic and evolutionary cross-resistance against parasitoids and pathogens in Drosophila melanogaster

    Get PDF
    BackgroundWhen organisms are attacked by multiple natural enemies, the evolution of a resistance mechanism to one natural enemy will be influenced by the degree of cross-resistance to another natural enemy. Cross-resistance can be positive, when a resistance mechanism against one natural enemy also offers resistance to another; or negative, in the form of a trade-off, when an increase in resistance against one natural enemy results in a decrease in resistance against another. Using Drosophila melanogaster, an important model system for the evolution of invertebrate immunity, we test for the existence of cross-resistance against parasites and pathogens, at both a phenotypic and evolutionary level.MethodsWe used a field strain of D. melanogaster to test whether surviving parasitism by the parasitoid Asobara tabida has an effect on the resistance against Beauveria bassiana, an entomopathogenic fungus; and whether infection with the microsporidian Tubulinosema kingi has an effect on the resistance against A. tabida. We used lines selected for increased resistance to A. tabida to test whether increased parasitoid resistance has an effect on resistance against B. bassiana and T. kingi. We used lines selected for increased tolerance against B. bassiana to test whether increased fungal resistance has an effect on resistance against A. tabida.Results/ConclusionsWe found no positive cross-resistance or trade-offs in the resistance to parasites and pathogens. This is an important finding, given the use of D. melanogaster as a model system for the evolution of invertebrate immunity. The lack of any cross-resistance to parasites and pathogens, at both the phenotypic and the evolutionary level, suggests that evolution of resistance against one class of natural enemies is largely independent of evolution of resistance against the other

    Organics in comet 67P – a first comparative analysis of mass spectra from ROSINA–DFMS, COSAC and Ptolemy

    Get PDF
    The ESA Rosetta spacecraft followed comet 67P at a close distance for more than 2 yr. In addition, it deployed the lander Philae on to the surface of the comet. The (surface) composition of the comet is of great interest to understand the origin and evolution of comets. By combining measurements made on the comet itself and in the coma, we probe the nature of this surface material and compare it to remote sensing observations. We compare data from the double focusing mass spectrometer (DFMS) of the ROSINA experiment on ESA's Rosetta mission and previously published data from the two mass spectrometers COSAC (COmetary Sampling And Composition) and Ptolemy on the lander. The mass spectra of all three instruments show very similar patterns of mainly CHO-bearing molecules that sublimate at temperatures of 275 K. The DFMS data also show a great variety of CH-, CHN-, CHS-, CHO2- and CHNO-bearing saturated and unsaturated species. Methyl isocyanate, propanal and glycol aldehyde suggested by the earlier analysis of the measured COSAC spectrum could not be confirmed. The presence of polyoxymethylene in the Ptolemy spectrum was found to be unlikely. However, the signature of the aromatic compound toluene was identified in DFMS and Ptolemy data. Comparison with remote sensing instruments confirms the complex nature of the organics on the surface of 67P, which is much more diverse than anticipated

    Evolution of water production of 67P/Churyumov-Gerasimenko: An empirical model and a multi-instrument study

    Get PDF
    We examine the evolution of the water production of comet 67P/Churyumov–Gerasimenko during the Rosetta mission (2014 June–2016 May) based on in situ and remote sensing measurements made by Rosetta instruments, Earth-based telescopes and through the development of an empirical coma model. The derivation of the empirical model is described and the model is then applied to detrend spacecraft position effects from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) data. The inter-comparison of the instrument data sets shows a high level of consistency and provides insights into the water and dust production. We examine different phases of the orbit, including the early mission (beyond 3.5 au) where the ROSINA water production does not show the expected increase with decreasing heliocentric distance. A second important phase is the period around the inbound equinox, where the peak water production makes a dramatic transition from northern to southern latitudes. During this transition, the water distribution is complex, but is driven by rotation and active areas in the north and south. Finally, we consider the perihelion period, where there may be evidence of time dependence in the water production rate. The peak water production, as measured by ROSINA, occurs 18–22 d after perihelion at 3.5 ± 0.5 × 1028 water molecules s-1. We show that the water production is highly correlated with ground-based dust measurements, possibly indicating that several dust parameters are constant during the observed period. Using estimates of the dust/gas ratio, we use our measured water production rate to calculate a uniform surface loss of 2–4 m during the current perihelion passage

    Nanofluids Research: Key Issues

    Get PDF
    Nanofluids are a new class of fluids engineered by dispersing nanometer-size structures (particles, fibers, tubes, droplets) in base fluids. The very essence of nanofluids research and development is to enhance fluid macroscopic and megascale properties such as thermal conductivity through manipulating microscopic physics (structures, properties and activities). Therefore, the success of nanofluid technology depends very much on how well we can address issues like effective means of microscale manipulation, interplays among physics at different scales and optimization of microscale physics for the optimal megascale properties. In this work, we take heat-conduction nanofluids as examples to review methodologies available to effectively tackle these key but difficult problems and identify the future research needs as well. The reviewed techniques include nanofluids synthesis through liquid-phase chemical reactions in continuous-flow microfluidic microreactors, scaling-up by the volume averaging and constructal design with the constructal theory. The identified areas of future research contain microfluidic nanofluids, thermal waves and constructal nanofluids
    corecore