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The influence of ambient fluid stratification on buoyant miscible jets and plumes is
studied theoretically and experimentally. Given a fixed set of jet/plume parameters,
and an ambient fluid stratification sandwiched between top and bottom homogeneous
densities, a theoretical criterion is identified to show how step-like density profiles
constitute the most effective mixers within a broad class of stable density transitions.
This is assessed both analytically and experimentally, respectively by establishing
rigorous a priori estimates on generalized Morton–Taylor–Turner (MTT) models
(Morton et al., Proc. R. Soc. Lond. A, vol. 234, 1956, pp. 1–23; Fischer et al.,
Mixing in Inland and Coastal Waters. Academic, 1979), and by studying a critical
phenomenon determined by the distance between the jet/plume release height with
respect to the depth of the ambient density transition. For fluid released sufficiently
close to the background density transition, the buoyant jet fluid escapes and rises
indefinitely. For fluid released at locations lower than a critical depth, the buoyant
fluid stops rising and is trapped indefinitely. A mathematical formulation providing
rigorous estimates on MTT models is developed along with nonlinear jump conditions
and an exact critical-depth formula that is in good quantitative agreement with the
experiments. Our mathematical analysis provides rigorous justification for the critical
trapping/escaping criteria, first presented in Caulfield & Woods (J. Fluid Mech.,
vol. 360, 1998, pp. 229–248), within a class of algebraic density decay rates. Further,
the step-like background stratification is shown to be the most efficient mixing profile
amongst a broad family of stably stratified profiles sharing the same density transition
within a fixed distance. Finally, the analysis uncovers surprising differences between
the Gaussian and top-hat profile closures concerning initial mixing of the jet and
ambient fluid.
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1. Introduction
Mixing in stratified fluids is a topic of fundamental importance in nature. Of

particular interest is the case in which mixing results in trapping phenomena, such as
those of pollutants in oil spills and other effluents in similar environments. Here, we
focus on the case of buoyant turbulent miscible jets/plumes in stable ambient fluid
stratification and the mixing and trapping observable in such set-ups.

There is a wealth of literature on buoyant turbulent jets, particularly following the
seminal work of Morton, Taylor & Turner (1956) – for extensive reviews on the
subject, see for example the classic text by Fischer et al. (1979), and more recent
review articles by Hunt & van den Bremer (2010) and Woods (2010).

Despite the extensive literature on this subject, many open questions remain,
particularly regarding the mathematical foundation of predictions based on Morton–
Taylor–Turner (MTT) models. In particular, the rigorous characterization of trapping
versus escaping of buoyant jets and plumes and its dependence on the functional form
of stratification profiles has not been fully explored. Such a study would naturally
lead to a search for which ambient fluid density profile constitutes an optimal mixer
for trapping. In turn, this would lead to establishing the asymptotic properties of
jet/plume densities for sufficiently weak mixers for escaping at large distances from
their source. Such questions are relevant in a variety of physical settings, among
which the most common is probably that of atmospheric inversions with smoke stack
discharges. Notably, the work by Briggs et al. (Briggs 1965; Hanna, Briggs & Hosker
1983) presented trapping criteria for smoke stack pollution under sharply stratified
atmospheric conditions.

Here, we carry out a mathematically rigorous analysis of the MTT model for a
broad class of ambient density profiles, and experimentally verify their predictions.
Our building block (both analytically and experimentally) is a two-layer density
configuration. We explore the problem of characterizing and measuring a critical
phenomenon that can arise in such ambient fluid set-ups. By varying the distance of a
jet nozzle suspended below a density transition, an analytical and experimental critical
length is determined: jets at greater distances than this length will be completely
trapped, while jets with nozzles nearer the transition will escape. Somewhat related
experimental studies have appeared in the literature involving slit injections (Wallace
& Sheff 1987; Noh, Fernando & Ching 1992; Ching, Fernando & Noh 1993). These
references explored plume penetration behaviour through a sharp density transition as
various parameters were varied. The basic observation in these line-source studies was
that strong penetration occurs when either the momentum is large or the stratification
is weak. However, these experiments were conducted in a fixed thickness of top and
bottom layer, and did not focus on determining a critical length, and a companion
mathematical analysis was not developed.

A schematic of our experimental set-up is presented as an actual picture from
our experiment in figure 1. This depicts typical trapping/escape outcomes in our
experiments. The analytical counterpart of our study provides a mathematically
rigorous proof that step-like stratifications of the ambient fluid are, under appropriate
circumstances, the optimal mixers of the miscible jet fluid with the environment. As a
corollary, we are able to provide a proof of the trapping/escaping criteria presented by
Caulfield & Woods (1998) through Gronwall-like estimates on solutions of the MTT
hierarchy, including the solution existence/breakdown intervals. An exact formula
for step-function stratifications employing nonlinear jump conditions follows from
this analysis. This formula compares favourably at a quantitative level with the data
from an extensive experimental campaign to isolate the functional dependence of
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FIGURE 1. (Colour online) Water jet escaping (a) and trapping (b) in a sharp ambient
density transition. The experiments consist of firing a miscible jet of initial density ρj(0)=
0.998 g cm−3 with fixed volumetric flow rate of 15 ml s−1, within an ambient fluid with
bottom density ρb = 1.055 g cm−3 and top density ρt = 1.043 g cm−3. The Reynolds
number based on the nozzle diameter is approximately Re' 4600. The distance between
nozzle and transition layer is (a) 4 cm and (b) 12 cm. The nozzle diameter is 0.4572 cm
and the tank width is 72.4 cm.

the critical distance with respect to the physical parameters. We remark that prior
formulae, derived in Adalsteinsson et al. (2011), presented a critical height formula
in homogeneous background fluids; however, this result does not account for the
important mixing that occurs when passing through the sharp background-density
layer. The new formulae derived here take into account this critical additional strong
mixing, resulting in an accurate prediction of the experimental critical lengths we
observe. Our optimal mixing result is obtained through the direct comparison between
the general system and the new exact solution (which now accounts for mixing in the
density transition layer) by using Gronwall-like estimates. While at first sight it may
seem intuitively obvious that the step density profile would provide the optimal mixer,
given that such ambient fluid density profile maximizes the local buoyancy of the jet
on its way to the density transition, a closer inspection shows that this is not the case.
Our analysis proves that the initial mixing by the Gaussian closure model with a
homogeneous background fluid is the weakest mixer amongst all stable stratifications.
However, the extra mixing at the density step under this (Gaussian) closure restores
the optimality of the two-layer stratification. The competition of weaker mixing in
the bulk with enhanced mixing at the transition layer seems rather subtle and requires
careful mathematical analysis. Alternatively, for the top-hat closure, the higher contrast
of jet density within a homogeneous lower fluid environment indeed results in the
strongest initial mixing, while the two-layer stratification remains the strongest mixer
even under this closure when mixing is measured across the full density transition
layer.

The layout of this paper is as follows. We first study the general MTT model
to establish mathematical criteria for solution existence and their finite-distance
breakdown in § 2.1. In § 2.2, we derive sharper bounds for general ambient
density profiles using Gronwall-like estimates, and study asymptotic behaviours
in homogeneous background. We then apply these results to a family of stratification
profiles of relevance for theoretical and experimental investigations in § 2.3. The
estimates here and in § 2.2 provide the rigorous framework for numerical observations
in Caulfield & Woods (1998) reporting trapping/escaping criteria for a family
of power-law density–height dependence. An exact formula for the case of step
density–height dependence is presented next, § 2.4, under physically motivated jump



conditions, which for their rigorous justification requires a study, carried out in § 2.5,
of linear stratifications (or, more generally, by approximating the step function by a
general family of smooth functions). The optimal mixer results for a broad class of
stable stratifications, including their non-intuitive behaviour dependence upon turbulent
closure schemes, are presented in § 2.6. In § 3, we describe the experimental methods
we use. In § 4, we compare the experimental results with the predictive capabilities of
the theory, both by establishing the critical height and by demonstrating the optimality
of two-layer set-ups as mixers. We additionally explore the combined fine-tuning
effects of using variable (local Richardson-number-dependent) entrainment along with
modelling with a smooth, sharp density transition. Finally, a direct application to
the Deepwater Horizon oil spill in the Gulf of Mexico of the optimal mixing result
is presented to close this section. A discussion session, § 5, concludes the paper.
Technical details are reported in the four appendices.

2. Theoretical results
2.1. Model and solution existence criterion

We begin by considering the reduced model in Morton et al. (1956),

(b2w)′ = 2αbw, (b2w2)′ = 2gλ2b2θ, (b2wθ)′ = ρ ′a(b2w)/(Λρb), (2.1a−c)

where primes denote differentiation d/dz, b(z) is the jet width, w(z) is the vertical
jet velocity, θ(z)= (ρa(z)− ρj(z))/ρb is the density anomaly, and ρa(z) is the ambient
background density. Here the constants are the gravitational acceleration g, oriented
downwards with respect to the vertical coordinate z, the entrainment coefficient α, the
mixing coefficient λ (Morton et al. 1956; Fischer et al. 1979), and Λ= λ2/(1+ λ2),
respectively. Letting q= b2w, m= b4w4 and β = b2wθ , system (2.1) becomes

q′ = 2αm1/4, m′ = 4gλ2qβ, β ′ = ρ ′aq/(Λρb), (2.2a−c)

describing the volume, momentum and buoyancy fluxes, respectively. We note that
this model in (2.1) employs a constant entrainment coefficient; below, in § 4, we
discuss in detail different choices of this constant, as well as examining a nonlinear
local Richardson-number-dependent entrainment law originally presented by Priestley
& Ball (1955). The initial conditions for this system are discussed below in (2.36).
The model in this form also employs the Gaussian plume closure, which assumes
that the velocity and density profiles are self-similar Gaussian functions of cylindrical
radial coordinate with ratio of half-width scaling coefficients between velocity and
density defined as the constant λ. A variant of system (2.1) would replace Λ with
unity and λ= 1/

√
2 for the so-called ‘top-hat’ closure model. (This alternative closure

is explored analytically below, with appropriately modified initial conditions.)
For a stably stratified environment (ρ ′a 6 0), the solution to (2.2) exists in [0, zs),

where zs is the location where momentum vanishes (m(zs) = 0), provided the initial
values of q(0)=Q0, m(0)=M0 and β(0)=B0 are all positive. The proof of existence
is divided into two regions, namely [0, zne] and [zne, zs), where zne is the neutral
buoyant location (β(zne)= 0).

The existence of solutions can be established by the bounds

Q0 6 q 6 2Q0eKz, M0 6 m 6 M0 sinh(Kz), 0 6 β 6 B0 in [0, zne],
Q0 6 q 6 2Q0eKz, 0<m 6 m(zne), −∞<β 6 0 in [zne, zs),

}
(2.3)



through the following estimate. Initially, Q0, M0 and B0 are all positive, and, as long
as m stays positive, the volume equation in system (2.2) shows that q is increasing,
and hence must be positive. As q> 0, β is decreasing but still positive in [0, zne], so
that m is increasing, m > M0 > 0, by the momentum equation in (2.2). For z > zne,
note that zne also plays the role of locating where the maximum momentum occurs,
since m is decreasing after zne; for as long as m does not decrease to zero, q keeps
increasing, and β keeps decreasing.

Upper bounds for q and m are sufficient to show existence in [0, zne], as 06β 6B0.
Non-dimensionalizing the q and m equations in (2.2) by q̄= q/Q0 and m̄=m/M0, the
differential inequalities

q̄′ = 2αM1/4
0

Q0
m̄1/4 6 2αM1/4

0

Q0
m̄, (2.4a)

m̄′ = 4gλ2βQ0

M0
q̄ 6 4gλ2B0Q0

M0
q̄ (2.4b)

follow, with the inequality in the first line holding since m̄> 1 in [0, zne]. Let K be
the larger of 2αM1/4

0 /Q0 and 4gλ2Q0B0/M0. Comparing the system in (2.4) with the
auxiliary linear system q̄′b =Km̄b and m̄′b =Kq̄b yields

1 6 q̄ 6 1
2 [eKz + e−Kz] = q̄b(z), 1 6 m̄ 6 1

2 [eKz − e−Kz] = m̄b(z), (2.5a,b)

so that q̄ and m̄ have upper and lower bounds in any finite interval [0, zne].
Next, for z> zne, m̄ decreases, and the bounds for q̄ in (2.5) hold until m̄(zR)= 1

for some zR ∈ (zne, zs). Further, we point out that the bounds in (2.5) actually apply
for all z ∈ [0, zR].

Continuing beyond zR from (2.4a), the differential inequality

q̄′ 6 2αM1/4
0 /Q0 6 K (2.6)

holds for z> zR, hence q̄6 q̄(zR)+K(z− zR). Stitching this bound together with (2.5b)
gives

q̄(zR)6 1
2 [eKzR + e−KzR]6 eKzR 6 eKz, (2.7)

and noting the functional relation K(z− zR) < eK(z−zR) 6 eKz yields an upper bound

q̄ 6 2eKz (2.8)

for z > zR, so that an overall bound for dimensional q is

q 6 2Q0eKz, for z ∈ [0, zs). (2.9)

In summary, for z> zne, m decreases, and, as long as m stays positive, 0<m<m(zne),
Q0 6 q 6 2Q0 exp(Kz), and |β| also does not blow up in finite heights z; since q has
a smooth integrable lower bound, this allows one to bracket β by

B0 > β,

β = B0 −
∫ z

0

|ρ ′a|
Λρb

q ds > B0 −
∫ z

0

2|ρ ′a|Q0

Λρb
eKs ds,

 (2.10)



so that |β| stays bounded for the entire interval z ∈ [0, zs), guaranteeing solution
existence therein.

The above estimates show that the breakdown criterion for system (2.2) can only be
m= 0, which can only happen if z= zs, whose location (finite or infinite) depends on
the initial data, parameters and density profile. First, observe that the system (2.2) is
non-Lipschitz at m= 0. Second, if m were to vanish, then, by the relation b= q/m1/4,
and the boundedness of q, just established, b would blow up at distance zs.

We next want to discuss the finiteness or otherwise of the singularity location zs.
First, we note that, if zne =∞, i.e. β never touches zero, the solution is global since
by definition zne 6 zs. In fact, in this case, q and m are increasing and bounded by the
first two estimates in (2.3), while β remains positive for all z.

Second, suppose zne were to be a finite number. In this case, there exists zγ > zne

such that β(zγ ) < γ < 0 for some negative number γ , provided ρ ′a(zne) < 0. (Note
that, if ρa(z) is constant for all z> zne, i.e. β ≡ 0 after zne, then momentum would be
conserved for all z> zne, so that zs would stay at ∞; more complicated cases in which
ρa is continuous but not differentiable can be handled similarly.) Now, assuming the
existence of γ < 0 and integrating the differential inequality

m′ = 4gλ2qβ < 4gλ2Q0γ (2.11)

from zγ to any z> zγ yields

m 6 M(zγ )+ 4gλ2Q0γ (z− zγ ), (2.12)

which implies that m must vanish within a finite distance z≡ zs, since the last term in
this inequality is a linearly decaying function of increasing z. Hence, under the above
assumptions, zs is finite.

2.2. More delicate bounds and asymptotic relations
Sharper bounds for q and β in system (2.2) can be derived by using Gronwall-like
estimates. Combining (2.2b) and (2.2a) yields

2αm1/4 dm
dq
= 8α

5
d

dq
(m5/4)= 4gλ2βq, (2.13)

and since β 6 B0, the inequality

8α
5

d
dq
(m5/4)6 4gλ2B0q (2.14)

gives, by the Gronwall lemma, a bound on m(q):

m(q)6
(

5gλ2B0

4α
(q2 −Q2

0)+m(Q0)
5/4

)4/5

. (2.15)

Solving for q in (2.2) taking into account this inequality yields the estimate

Z(q)≡ 1
2α

∫ q

Q0

(
5gλ2B0

4α
(s2 −Q2

0)+m(Q0)
5/4

)−1/5

ds 6 z(q). (2.16)



The left-hand side of (2.16) defines the inverse function of Qh(Z) for the solution to
the homogeneous case, written with new variables Qh and Mh,

Q′h = 2αM1/4
h , M′h = 4gλ2B0Qh, B= B0. (2.17a−c)

Hence, for the same value of volume flux Qh = q, the corresponding height Z(Qh) in
homogeneous ambient fluid is less than or equal to the height z(q) for the general case.
Given that Qh(z) is a strictly increasing function of height z, the value of the volume
flux Q̃h defined by the equality Z(Q̃h)= z(q) must satisfy Q̃h(Z) > Qh(Z)= q(z), i.e.
for any fixed distance z, q(z)6 Qh(z).

Next, integrating the Mh and m equations and using the same inequality β 6 B0

yields the relation

m=M0 +
∫ z

0
4gλ2βq ds 6 M0 +

∫ z

0
4gλ2B0Qh ds=Mh. (2.18)

Thus, we have the following bounds on the general system in terms of the
homogeneous ambient fluid variables,

q(z)6 Qh(z), m(z)6 Mh(z), (2.19a,b)

provided the solution of (2.2) exists.
An asymptotic relation for z → ∞ can be found by using the inverse integral

solutions of (2.17), viewed as functions of Qh and Mh, respectively:

z(Qh)= (Qh −Q0)
4/5

2α

∫ 1

0

(
M5/4

0 +
5gλ2B0

4α
r(2Q0 + (Qh −Q0)r)

)−1/5

dr, (2.20)

z(Mh)= Mh −M0

4gλ2B0

∫ 1

0

(
Q2

0 +
4α

5gλ2B0
((M0 + (Mh −M0)r)5/4 −M5/4

0 )

)−1/2

dr. (2.21)

This shows that Qh ∼ C1B1/3
0 z5/3 and Mh ∼ C2B4/3

0 z8/3 as z→∞, where the constants
are C1= (1944gλ2α4/625)1/3 and C2= (9αgλ2/5)4/3. Note that, following the previous
argument, if a priori it is known that β >β∞>0, a lower bound for q can be obtained
by

1
2α

∫ q

Q0

(
5gλ2β∞

4α
(s2 −Q2

0)+m(Q0)
5/4

)−1/5

ds > z(q), (2.22)

and since m(Q0) and Q0 are positive, by changing variables s = Q0 + (q − Q0)r, it
follows that

z(q) <
(q−Q0)

4/5

(40gλ2α4β∞)1/5

∫ 1

0
(r(2Q0 + (q−Q0)r))−1/5 dr<

(
q−Q0

C1β
1/3
∞

)3/5

. (2.23)

Thus, a lower bound for q follows by (2.23)

q(z) >C1β
1/3
∞ z5/3. (2.24)



2.3. Analytical trapping/escaping criterion for more general profiles
In system (2.2), for algebraic density decay rates, ρ ′a = Czp (C < 0), a critical power
p = −8/3 separates two distinct behaviours: if p > −8/3, the jet/plume must trap;
while for p < −8/3 either trapping or escaping could happen (Caulfield & Woods
1998). We prove this below, and also show that the result extends to asymptotic
relations ρ ′a ∼Czp as z→∞, depending on the constant |C|. (Note that this constant
is set by the overall density difference if the power-law dependence on z is strictly
imposed throughout the domain; our result is slightly more general in that this
dependence is only used asymptotically for large z.) We remark that this critical
behaviour, which was originally observed numerically by Caulfield & Woods (1998),
has been recently investigated by Kaye & Scase (2011) using formal asymptotic
tools which have provided a partial insight into this phenomenon. This study, under
the restrictive assumption that the plume is straight-sided (purely conical) and by
assuming infinite existence domain for the solution, successfully yields the critical
exponent p = −8/3 obtained by Caulfield & Woods (1998). Our results below use
integral estimates to achieve mathematical rigour and avoid formal assumptions; the
techniques we use further extend and prove the existence of this critical behaviour
for a much broader class of background density profiles.

To construct a rigorous mathematical proof, we use the solution existence criterion
established in § 2.1: since ρ ′a∼Czp as z→∞, for z large enough, β ′ must be strictly
negative so that, if zne is finite, β must be less than some value γ < 0. Hence, by
§ 2.1, existence of finite zne implies breakdown of the system, which means trapping
must occur. Conversely, if β > 0, the solution of (2.2) is global and the injection rises
indefinitely.

Next, to prove trapping, suppose β >0 for all z; since β is monotonically decreasing,
so β→ β∞ > 0 as z→∞, and ρ ′a ∼ Czp for p > −8/3 as z→∞ implies ρ ′az5/3 /∈
L 1(R+). With β∞ > 0, either β∞ > 0,

β 6 B0 − C1

Λρb

∫ z

0
|ρ ′a|β1/3

∞ z5/3 ds< 0, (2.25)

for z large enough, or β∞= 0, for which the above lower estimate for q fails. For the
purpose of determining whether ρ ′aq belongs to L 1(R+), it is sufficient to estimate q
for finite z: when β∞ = 0, for any fixed zc <∞, β(zc)= βc > 0. Confining z ∈ [0, zc),
and following the same steps as above, we have q(z)>C1β

1/3
c z5/3=C1β(z)1/3z5/3. The

β equation in (2.2) thus yields

(β(z))2/3 6 B2/3
0 −

2
3

(
C1

Λρb

∫ z

0
|ρ ′a|s5/3 ds

)
< 0 (2.26)

for z large enough. Hence zne must be finite, and trapping must occur.
On the other hand, if ρ ′az5/3 ∈L 1(R+), since q6Qh (cf. § 2.2), with Qh the solution

to the system of equations with homogeneous ambient density (2.17), we have the
following estimate on β:

β(z)= B0 +
∫ z

0

ρ ′a
Λρb

q ds > B0 −
∫ z

0

|ρ ′a|
Λρb

Qh ds. (2.27)

Since we know Qh∼C1B1/3
0 z5/3 as z→∞ (see § 2.2), a sufficiently small |C| prevents

β = 0 at finite distances and leads to escaping, while a large value of |C|, through
estimate (2.26), again forces trapping as β(z) vanishes for some finite value z.



2.4. Exact formula with two-layer ambient profile
We now focus on a generalized MTT system for the behaviour of a turbulent jet/plume
in a sharply stratified ambient fluid (represented by a step function, ρ = ρb for z< L
and ρ = ρt when z> L),

(b2w)′ = 2αbw, (b2w2)′ = 2gλ2b2θ, (b2wθ)′ =−(θf δ(z− L)/Λ)b2w, (2.28a−c)

where θf = (ρb − ρt)/ρb, L is the distance between the nozzle and the transition layer,
and δ is the Dirac delta function. Note that this is a nonlinear differential equation
with a discontinuous coefficient, so that a selection criterion for a physical solution is
needed.

A mathematical formula for a critical length can be shown to be accurate when
compared to experimental data with explicit quadrature involving a hyper-geometric
special function (see e.g. figure 5 below)

L∗ = L0

∫ A∗

1

ds√
s5/4 + ε − 1

, (2.29)

where the parameter

ε = 5(1+ λ2)1ρ̄r0g

16
√

2αw2
0

(2.30)

is proportional to the square of the Richardson number introduced in Fischer et al.
(1979), the upper limit of integration is

A∗ = (1+ ε((1ρ̄/θf )
2 − 1))4/5 (2.31)

and the length scale L0 is given by the combination of initial conditions and
entrainment parameters as

L0 =
(

5r0w2
0

16
√

2g(1+ λ2)α1ρ̄

)1/2

. (2.32)

Here ρj(0), r0 and w0 are the physical initial jet density, radius and velocity,
respectively, and 1ρ̄ = (ρb − ρj(0))/ρb. (We remark that a different formula for L∗,
L∗m say, was presented in Adalsteinsson et al. (2011); the upper limit of integration
in (2.29) was taken to be A∗m ≡ (1 + ε((θ0/θf )

2 − 1))4/5, thus neglecting a jump
condition associated with a sharp density transition and hence missing the sharp layer
component of mixing captured by using A∗.)

System (2.28) with continuity of b and w for all z, and differentiability of b, w and
θ for all z 6= L, implies

b2wθ =
{
γ1 for z< L,
γ2 for z> L.

(2.33)

The solution for constant background density (appendix A) is

z= 1
4gλ2

∫ Φ

Φ0

ds√
as5/4 + A

, (2.34)



where Φ(z)= (w(z)/θ(z))2 and a= 4α/(5gλ2√γ1), so that the exact solution to (2.28)
follows by evaluating the difference between γ1 and γ2. The critical condition γ2 = 0
follows from the existence criterion in § 2.1.

In what follows, we will adopt the convention that z-dependent variables will be
written with capital letters specifically when the density profile is piecewise constant.
Whenever the density profiles are further chosen within other special functional
classes, we will label such variables with ‘hatted’ capital letters. With a change of
variables Q= b2w, M = b4w4 and B= b2wθ , system (2.28) can be rewritten as

Q′ = 2αM1/4, M′ = 4gλ2QB, B′ =−θf δ(z− L)Q/Λ, (2.35a−c)

with initial conditions Q0, M0 and B0. By (2.33), B = B0 = γ1 before L and B = γ2
after L. By the results in § 2.1, solution existence in [0, L) is guaranteed, and whether
trapping or escaping occurs is determined by γ2 < 0 or γ2 > 0, respectively.

The entrainment models we have used so far are derived under the assumption of
Gaussian profiles, and in order to compare with experiments the initial conditions are
rescaled by θ0=1ρ̄/Λ, w̄0= 2w0 and b̄0= r0/

√
2 to conserve the initial fluxes. Here

r0, w0 and ρj(0) are the measured jet radius, vertical velocity and injected fluid density,
respectively. Hereafter, initial conditions for the new variables will be defined by

Q0 = b̄2
0w̄0, M0 = b̄4

0w̄4
0, B0 = b̄2

0w̄0θ0, (2.36a−c)

with the ambient density at the location of the nozzle being ρa(0)≡ ρb.

2.5. Jump conditions and solutions to linear ambient stratification profile
A unique physical solution to (2.28) is obtained by imposing the jump condition

γ2 − γ1 =−ρb − ρt

Λρb

∫ L+ε

L−ε
δ(z− L)b2w dz=−ρb − ρt

Λρb
Q(L−), (2.37)

for any ε > 0, and continuity of b and w at L. (Hereafter, we adopt the standard
notation (·)± for left/right limiting values to real variables.) This condition can be
justified by treating the step function as the limit of appropriate constant-linear-
constant (CLC) or constant-smooth-constant (CSC) profiles.

2.5.1. Step function approximated by CLC profiles
The solution for a constant ambient density has been well studied, while for the

special case of a linear ambient density profile, with N2 = −ρ ′a/(Λρb) = const., the
general system in (2.2) becomes autonomous and thus lends itself to an explicit
solution, such as that presented in Mehaddi, Candelier & Vauquelin (2013) (though
with a different set of variables than those used here, which, as a technical point,
requires splitting the vertical range into intervals above and below the neutral
buoyancy height, a complication avoided in our solution below). By studying the
buoyancy flux, which has the advantage of being immediately invertible due to its
monotonic dependence on z, the neutral buoyancy and apex heights can be computed
explicitly by selecting appropriate domains of integration (appendix B), resulting in
the solution

z(Bl)= 1
N2

∫ B0

Bl

(
Q2

0 + 4α
∫ B0

r

(
M0

N8
+ 2gλ2

N10
(B2

0 − s2)

)1/4

ds

)−1/2

dr. (2.38)
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FIGURE 2. (Colour online) (a) A CLC sequence of approximations crossing the step
function at density ρm (ρt 6 ρm 6 ρb), providing a class of profiles that regularize the
jump conditions using the available exact linear solution. (b) A CSC sequence of step
approximations, giving an example of another class of profiles that smoothly extend the
regularizations of the jump conditions via the Gronwall estimates. (c) Two-layer (thick)
and linear (dotted), quadratic (dashed) and quintic (dot-dashed) density profiles decreasing
from ρb to ρt within distance L∗. Profiles shown in (b,c) both depict examples of hatted
densities which belong to the class of functions given in (2.45).

The neutral buoyancy and apex positions follow from this by selecting Bl = 0 and
Bl = −

√
CB/(2gλ2), respectively, where CB = N2M0 + 2gλ2B2

0. Note that in Scase,
Caulfield & Dalziel (2006), a formal series solution for B(z) is derived. Applying
the implicit function theorem to (2.38) yields the first couple of terms in Scase et al.
(2006). In this regard, the result derived here can be viewed as complementary to that
in Scase et al. (2006), but we remark that our closed-form expression establishes the
convergence of their formal series solution (which, by involving nested sums, makes
convergence difficult to prove directly).

The jump conditions in § 2.5 most simply follow by approaching the step-function
limit with a family of CLC profiles (see figure 2a), generalized to intersect the limiting
step function at any density ρm, ρt 6ρm 6ρb, by constructing the CLC ambient density
function with ρa(L∗)= ρm,

ρa(z)=


ρb, z ∈ [0, L∗ − l1],
ρb − (ρb − ρt)(z− L∗ + l1)/(l1 + l2), z ∈ [L∗ − l1, L∗ + l2],
ρt, z ∈ [L∗ + l2,∞).

(2.39)

The identity

z(B2)− z(B1)=
∫ B1

B2

1
N2

[
Q2

1 + 4α
∫ B1

r

(
M1

N8
+ 2gλ2

N10
(B2

1 − s2)

)1/4

ds

]−1/2

dr (2.40)

follows from (2.38), and, insisting on z(B2)= L∗ + l2 and z(B1)= L∗ − l1 (implicitly
select values of B1, B2, Q1 and M1), one can define l ≡ l1 + l2 = z(B2) − z(B1).
Substituting N2 = (ρb − ρt)/(Λρbl) yields the identity

1=
∫ B1

B2

Λρb

(ρb − ρt)

[
Q2

1 + 4α
∫ B1

r

(
M1

N8
+ 2gλ2

N10
(B2

1 − s2)

)1/4

ds

]−1/2

dr, (2.41)

and by taking the limit l → 0 in (2.41) leads to (with standard bracket notation)
[B]L+L− = (ρt − ρb)Q(L−)/(Λρb) as l→ 0, which justifies the jump condition (2.37).
Continuity of M follows from 2gλ2([B]L+L−) = N2([M]L+L−) as l→ 0 (B 3); this forces
[M]L+L− = 0, as the left-hand side is non-zero. A similar argument (B 5) shows that Q
is continuous across the layer, which verifies continuity of w=√M/Q.



2.5.2. Smooth approximation of step density jumps
Next, we further generalize the derivation of jump conditions by considering a

family of CSC profiles limiting to a step (figure 2b),

ρa(z; zi)=


ρb, z ∈ [0, zi],
ρb − (ρb − ρt)fs(z), z ∈ [zi, L∗],
ρt, z ∈ [L∗,∞),

(2.42)

where fs is a smooth function with fs(zi)= 0 and fs(L∗)= 1 for some zi<L∗. We study
β(z; zi) for (2.2) using ρa(z; zi). Integrating the β equation starting from zi, and noting
that q is increasing with β = β0 in [0, zi], it follows that

β(L∗; zi)= β0 −
∫ L∗

zi

|ρ ′a|
Λρb

q ds<β0 − q(zi)

∫ L∗

zi

|ρ ′a|
Λρb

ds<β0 − q(zi)
ρb − ρt

Λρb
. (2.43)

Hence
β0 − q(zi)

ρb − ρt

Λρb
>β(L∗; zi) > B(L∗+), (2.44)

where the lower bound is provided in § 2.6. Since q=Qh (defined in (2.17)), sending
zi→ L∗ recovers (2.37).

As we shall see in § 4.5, the estimates we have established above allow us to
provide rigorous bounds on trapping heights of jets/plumes in realistic applications.

2.6. Optimal mixing profile and lower bound for trapping height
Deriving exact solutions to the MTT system (2.2) with arbitrary stratified density
profiles is challenging. However, by using the exact solution (2.34) in Gronwall-like
estimates for the general system, we next establish optimal mixing properties for a
broad class of density profiles, namely those that can be written as

ρ̂a(z)= ρb + (ρt − ρb)f (z), with f (0)= 0, f (z)= 1 for z > L∗, (2.45)

where f , in contrast with fs used above, is a continuously differentiable monotonically
increasing function which may match non-smoothly to the constant-density top and
bottom states. The reference two-layer step profile strictly dominates this class (see
figure 2c). For ease of comparison with system (2.35) and its jump conditions (2.37),
we rewrite (2.2) for the general profiles by denoting the dependent variables with hats,

Q̂′ = 2αM̂1/4, M̂′ = 4gλ2Q̂B̂, B̂′ =−(ρb − ρt)f ′(z)Q̂/(ρbΛ), (2.46a−c)

with the same positive initial data (2.36).
The goal is to show B̂(L∗) > 0≡ B(L∗+), i.e. the buoyancy fluxes of all profiles in

the ‘hat class’ are positive at z=L∗, which would lead to escaping solutions for (2.46).
In § 2.2 we showed that Q̂ 6 Qh = Q and M̂ 6 Mh =M for z ∈ (0,min{L∗, ẑs}) since
B= B0 for z∈ [0, L∗), where M̂(ẑs)= 0. Next we show that ẑne > L∗ where B̂(ẑne)= 0.
Now suppose by contradiction that ẑne 6L∗. The fact that M̂ attains its maximum value
at ẑne yields ẑne< ẑs (ẑne 6= ẑs since M̂(ẑne)>M0> 0), and hence Q> Q̂ in (0, ẑne]. Since
Q̂ and Q are increasing, the estimate∫ ẑne

0
f ′Q̂ dz< Q̂(ẑne)f (ẑne)6 Q(ẑne)f (ẑne)6 Q(ẑne) (2.47)



 contradicts the assumption ẑne 6 L∗,

0= B̂(ẑne) > B0 − ρb − ρt

ρbΛ
Q(ẑne)> B0 − ρb − ρt

ρbΛ
Q(L∗−)= B(L∗+)= 0, (2.48)

so that it must be ẑne>L∗. Since B̂ is decreasing, B̂(L∗)> B̂(ẑne)= 0, which completes
the proof. Note that the first inequality in (2.47) is strict because equality holds only
if Q̂ is constant in [0, ẑne]. Furthermore, since zs> zne>L∗, the solution to (2.46) exists
in the range [0, L∗].

In conclusion, the above argument proves that the two-layer profile is the best
mixer since Q̂ > 0 implies θ̂ (L∗) > 0 so that ρ̂j(L∗) < ρt = ρj(L∗+). Compared to
the step stratification, the jet density in any stratification of the continuous class
described above cannot exceed ρt, i.e. the jet cannot be neutrally buoyant before L∗,
and hence keeps rising due to positive buoyancy after passing through a continuous
density transition in this class. We remark that this optimal property extends to
density profiles with steps located at shorter distances L < L∗, since steps maximize
the density increment after the jump, as follows from the Gronwall estimates above,
rewritten for density,

ρ̂j(L)= ρt − ρbθ̂ (L)= ρt − ρbB̂(L)/Q̂(L) < ρt − ρbB(L+)/Q(L+)≡ ρj(L+), (2.49)

where the existence of the continuous hatted system is guaranteed by positivity of B̂
at lengths shorter than critical.

It is worth noting that the system of differential equations given in (2.46), with
density profiles in the class defined by (2.45), will enjoy global existence provided
the initial distance between the jet and the transition point is less than or equal
to L∗ (i.e. the jet nozzle locations, zjet, positioned at zjet > 0). This follows from
the proof of optimality above, since the buoyancy is conserved in the top layer.
However, this property clearly does not extend to jet nozzle locations with zjet < 0,
as the asymptotic results for constant-linear density profiles presented in appendix C
rigorously document. Consequently, for the results obtained in this paper regarding
the critical height and optimality for jets positioned with zjet > 0 (the primary focus
here), the plume height will diverge.

Further comments are in order for propagation distances not equal to L∗. Surprising,
non-intuitive behaviour originates in the Gaussian closure from the weakest initial
mixing occurring in homogeneous environments as compared to that associated
with any stable stratification. As a result, if the distance travelled by the mixing
jet does not sample the complete range of ambient densities, the optimal mixer is
indeterminate. For example, figure 3 depicts the difference between the evolving jet
density in homogeneous and in linear stratifications, with the jet nozzle positioned at
the critical distance, L∗: for short distances, the linear stratification is a better mixer
than the two-layer case, whereas for longer distances this mixing property switches.
For the nozzle positioned at distances L larger than L∗, similar behaviour can be
observed numerically, with one additional complication arising from the possible loss
of existence, zs ∈ (0, L), in the limit of large L (before the full range of ambient
densities is sampled). For example, in the case of linear stratification, for large
distances L, direct mathematical analysis of the exact quadrature (2.38) indeed shows
that the singularity height zs occurs within this range; see appendix C. Attempts to
apply Gronwall-like estimates for general stratifications have not yet succeeded in
extending the rigorous characterization of the optimal mixer in this regime.
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FIGURE 3. (Colour online) Numerically computed jet density difference ρj− ρj,l between
two-layer and its linear stratification counterpart versus distance from the nozzle, with
jump location at L∗. Parameters are: ρb = 1.057 g cm−3, ρt = 1.045 g cm−3 (solid), ρt =
1.05 g cm−3 (dashed). Curves terminate at neutral buoyancy position of each linear profile.
Inset shows the step and linear ambient density profiles for each parametric choice.

Some of the peculiar initial mixing properties for the Gaussian plume closure can
be immediately seen from the estimate

ρ̄j
′(0)= 2αM1/4

0 θ0ρb/Q0 − ρ ′a(0)/Λ> 2αM1/4
0 θ0ρb/Q0 = ρ ′j(0), (2.50)

where ρ̄j and ρj are the jet densities in a stably stratified and sharply stratified
environment, respectively. Figure 3 illustrates this initial behaviour, and shows the
switching to optimality of the two-layer model at larger jet travel distances: the
transition can occur well before the critical distance L∗ (solid curve), or right at the
critical distance (dotted).

While the Gaussian plume closure model admits this peculiarity, for which the
non-constant background density profile is initially a better mixer than the constant
background, the top-hat closure model possesses a strong, pointwise ordering result
which we now prove. Specifically, solutions of the top-hat closure model (denoted by
the subscript (·)T),

q′T = 2αm1/4
T , m′T = 2gqTβT, β ′T = ρ ′aqT/ρb, (2.51a−c)

with an arbitrary background density profile always exhibit less mixing than their two-
layer ambient density profile counterparts,

ρj,T > ρ̂j,T, for any z> 0. (2.52)

Here, we have followed the hatted and non-hatted convention defined above to refer
to variable density with profile defined in (2.45) and piecewise-constant profiles,
respectively. We will further follow this and letter capitalization conventions as
before for the transformed variables QT , MT and BT . Note that the initial conditions
for the top-hat closure use the original physical initial conditions, without needing
to rescale them to match mean fluxes, etc., as was required within the Gaussian



closure model. From (2.51), it can be seen that BT = B0 for z ∈ [0, L), that is,
QT(ρb − ρj,T)=Q0(ρb − ρ0

j,T); solving for ρj,T gives

ρj,T = ρb − Q0

QT
(ρb − ρj(0)). (2.53)

On the other hand, since B̂T = B0 + θf
∫ z

0 f ′Q̂T ds, multiply by ρb on both sides to
obtain Q̂T(ρ̂a − ρ̂j,T)=Q0(ρb − ρj(0))+ (ρt − ρb)

∫ z
0 f ′Q̂ ds, so that

ρ̂j,T = ρ̂a − Q0

Q̂T

(ρb − ρj(0))+ ρb − ρt

Q̂T

∫ z

0
Q̂T f ′ ds. (2.54)

Taking the difference of (2.53) and (2.54) results in

ρj,T − ρ̂j,T =Q0(ρb− ρj(0))
(

1

Q̂T

− 1
QT

)
+ (ρb− ρ̂a)+ ρt − ρb

Q̂T

∫ z

0
Q̂T f ′ ds> 0, (2.55)

since the first term on the right-hand side is positive from the estimates in § 2.2, and
the last two terms add up to be positive by the estimate

(ρb − ρ̂a)+ ρt − ρb

Q̂T

∫ z

0
Q̂T f ′ ds = (ρb − ρt)f + ρt − ρb

Q̂T

∫ z

0
Q̂T f ′ ds

= ρb − ρt

Q̂T

(∫ z

0
f Q̂′T ds

)
> 0. (2.56)

Lastly, a peculiarity arising in the Gaussian closure is that the density jump across
the step is [ρj]+−= (ρt− ρb)/λ

2, which is independent of the initial jet density, making
possible a zero critical distance. To see this, assume that ρb < (1+ λ2)ρt and ρj(0) >
ρt + (ρt − ρb)/λ

2; the jump condition ρj(L+) > ρt (guaranteeing trapping) is satisfied
for any L> 0, and hence L∗= 0. Note that this does not occur in top-hat profiles: ρj is
continuous so that L∗= L∗m > 0. We remark that, for profiles not strictly dominated by
a reference two-layer step stratification, additional complications may arise and will
be explored in future work.

3. Miscible buoyant jet experiments
Here we describe the set-up of our experimental methodology for measuring

turbulent buoyant jets in stratified background ambient density profiles. In all our
experiments, jets were pumped vertically from below the fluid density transition
in a Plexiglas tank of dimension 72.4 cm × 56 cm × 80 cm (W × D × H). This
tank was filled halfway with a salt-water solution of density ρb. This density is
measured (indirectly) by using WTW Cond 197i and Orion 550A conductivity
meters with a WTW Tetracon 325 conductivity probe with a cell constant of
0.475 ± 1.5 %. A second salt-water solution of density ρt (ρt < ρb) was mixed
and poured slowly through a diffuser into the tank in order to minimize mixing
between the fluid being poured and the fluid already in the tank. Pouring took
approximately 45–60 min, creating sharp density transitions of thickness between
1.45 and 3.15 cm. All data presented here are constrained to have the density
difference ρb − ρt ' 0.012 ± 0.0004 g cm−3. A jet nozzle (of radius 0.4572 cm)



located in the tank was attached to a reservoir of fresh water. The positions of the
jet nozzle and of the conductivity probe were zeroed using a levelled laser, and the
distances between the jet nozzle and respective heights of the 90 % (smaller distance,
L90) and 10 % (larger distance, L10) values of density differences were recorded. The
90 % data are presented in figure 5, as this is the location where the plume begins to
experience the density transition. A three-way valve was employed to recirculate the
fresh-water jet fluid through the reservoir to minimize undesirable bubble injection. A
gear pump (Cole-Parmer Gear Pump Drive 75211-10 with a Micropump Gear Pump
O/C GJ-N25.PF15A) created a jet, and a Cole-Parmer 94778-00 flow meter with a
+GF+ Signet 3-2100-1L adapter was used to adjust the volumetric flow rate fixed at
4.4 ml s−1 (unless otherwise noted), yielding an entry Reynolds number Re ' 1370.
The three-way valve was opened to fire the jet into the tank for 15 s. The procedure
was repeated adjusting the distance between the jet nozzle and the transition layer
to window the critical escape/trap height to within 2–3 mm. Tanks were re-poured
after no more than eight jets were fired. The values of the data for the critical length,
L∗e , are taken to be the average of these two distances, the first being the distance
between the nozzle and L90 (or L10) for the case where the jet escapes, and the
second being the distance between the nozzle and L90 (or L10) for the case where
the jet traps (these differ by at most 2–3 mm for our entire dataset, typically smaller
than 1 mm).

A second set of experiments were performed to test the optimal mixing result
presented in § 2.6. We considered two different density profiles: one with an effectively
sharp density transition and a second, smoother profile satisfying the requirements
for an element of the class defined in (2.45). These profiles were measured with the
density probe. The sharp profile was prepared using the technique described above,
with a sharp transition layer approximately 1.4 cm thick. (We note that by pouring the
top layer a little faster, a layer of thickness slightly larger than 1.4 cm was produced
due to the mixing associated with the pouring process; through selective suction of
the mixed layer fluid, the layer thickness could be reduced for repeatable matching of
the profiles.) The jets were carefully levelled to be fired vertically, and relative heights
of conductivity probe and jet nozzle were determined using the method described in
the first experiments.

A faster flow rate, 15 ml s−1, was required to access a longer critical distance
needed to provide extra room for the smoother profile while keeping our density
profile within the class for optimal mixing, defined above. The ambient fluid was
re-poured for each trial, measuring the density profile to guarantee that the transition
layer was reproducible to within millimetres (compared to the overall thickness of
1.4 cm). In both cases, each jet was positioned to have the same background bottom
density value of 1.0572 g cm−3 at the nozzle location, and the same top density of
1.0492 g cm−3. To be precise, we define the L1 height to be the height at which
the background stratification is larger than the top density value by an amount equal
to 1 % of the density difference between the top and bottom densities, and in both
the sharp and smooth profiles this height L1 = 11.2 cm above the nozzle. In this
comparative study between sharp and smooth stratifications, this density difference
between the top and bottom homogeneous regions was kept at 0.008 g cm−3, which
is smaller than the one used in the first set of the experiments. This smaller density
difference, combined with larger flow rate, yields a larger critical distance than the
one measured above for our first detailed dataset. We remark that this larger distance
was important for repeatability, as it gave extra flexibility when pouring the smoother
profile (satisfying the conditions defining our class of density profiles expressed
by (2.45)).
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FIGURE 4. (Colour online) Effective two-layer stratification (red) and smoothed-out profile
(blue) with two-bucket mixing method for intermediate layers. The two profiles have the
same density (1.0572 g cm−3) at the nozzle location (yellow circle) (jet behaviour is
described in § 4) with the same constant density of 1.0492 g cm−3 at the top. The black
diamond is the location L1 defined in the text, and both jets are fired from the same
distance between the yellow circle and L1, 11.2 cm.

The second (smoother) density profile was poured using a two-bucket method,
seeking to create an approximately linear transition sandwiched between two limiting
values of the bottom and top constant-density fluid. In practice, switching to a
constant-density fluid in the two-bucket method inevitably leads to a long stratification
tail as the tank is filled. This tail will cross the originally sharp layer (and hence
would not be within our class of density profiles in which optimality is established).
To stay with our optimality class, the two-bucket pouring method is designed to
run out of bottom fluid at a depth in between L90 and L10 so that the smoother
profile matches the sharper profile at a depth L1. This procedure yields two density
profiles (see figure 4) which approximately satisfy the requirements needed to apply
the optimal mixing results of the previous section. Lastly, the distance from L1 to the
free surface in the sharp case is 20.8 cm, and in the smoother case is 14.6 cm. In
each case, the total depth is 67 cm. For all the jets used in this set of experiments,
the same pumping system was employed, and the flux monitored using a Proteus 800
Series NEMA 4 flow meter. The jet of the same density (in all experiments, dyed
fresh water, density 0.9972± 0.0007 g cm−3, was used). A cap was positioned over
each jet to prevent mixing between the background bottom fluid and the jet fluid,
and carefully removed just prior to firing each jet. In this second set of experiments,
the jet was then fired into the two different density profiles, each for 45 s, and
subsequently observed to either escape or trap.

Lastly, a third set of jet experiments was conducted to explicitly assess the role that
a lateral wall plays in modifying overall mixing and entrainments. In this experiment,
the bottom-layer density was 1.0551 ± 0.0001 g cm−3 and the top density was
1.0431 ± 0.0001 g cm−3 using dyed fresh water, density 0.9972 ± 0.0007 g cm−3.
One jet was fired from the tank centre, 36.2 and 28 cm away from the lateral walls
and 31.6 cm above the bottom. A second jet was fired one nozzle diameter from a
lateral wall and 28 cm from the back wall. Both cases were run at 15 ml s−1, and
12 cm below L90; in the first case, the depth of L90 was 41.6 cm above the bottom,
while in the second (wall) case, this depth was 40.1 cm. The layer thicknesses were,
respectively, 2.3 cm and 3.9 cm. The jet apex heights in the upper fluid were then
compared.
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FIGURE 5. (Colour online) Miscible buoyant-jet trapping/escaping critical length versus
1ρ̄, with layer thickness also shown for each experiment. (a) The L10 experimental data
and theoretical curves L∗m, for different values of λ and α. (b) The L90 experimental
data with theoretical curve L∗, for different values of λ and α. Curves are theoretical
predictions; and symbols are experimental data. Non-dimensional length scale normalized
by nozzle radius D (error bars based on instrumentation).

4. Validation of theoretical prediction with experimental and field observations
In this section, we focus on comparing the results of the theoretical predictions

with a set of experiments and a field observations from the Deepwater Horizon
oil spill in the Gulf of Mexico from 2010 (Joint Analysis Group 2011). We first
compare experiments carried out to measure the critical distance in sharp stratification.
Next we present an explicit demonstration of the optimal mixing result and also
document a wall effect. Additionally, we explore the joint effects of nonlinear,
local Richardson-number-dependent entrainment models and smooth but sharp density
transitions. Lastly, we present an application of our analysis to the actual stratification
that was measured in the Deepwater Horizon oil spill and obtain a mathematically
rigorous lower bound for the depth of underwater plume formation.

4.1. Experimental measurements of the critical distance in sharp stratification and
comparison with theory

The results of our experimental campaign are summarized in figure 5. The data for
the experimentally measured critical distance, L∗e , are plotted as a function of the
normalized density difference, 1ρ̄. In figure 5(a), L∗e is represented as the distance
between the jet nozzle and the depth of L10, while in figure 5(b), this distance refers
to L90. Error bars are drawn with respect to the accuracy of the calibrated slider
used to position the salinity probe. Also shown is the layer thickness (L10–L90)
for each data point in the panels below (identical in both left and right cases). The
theoretical curves are depicted based on the two-layer formula (2.29), using the two



different models generated with the parameters A∗ and A∗m. The comparison shows
the best agreement between the theoretical critical length and L90 data using A∗
(figure 5b), and somewhat less quantitative agreement between the theoretical critical
length and L10 data using A∗m (figure 5a). This is not unexpected: since A∗ < A∗m,
the theoretical critical length L∗ is smaller than L∗m, and the model that does not
incorporate the additional mixing due to the sharp layer should be expected to
compare more favourably with the L10 data, while, conversely, the model accounting
for sharp-layer mixing would do better with L90 experimental lengths. One interesting
effect in this data concerns the role of the layer thickness. The clustering of layer
thickness data in figure 5(c,d) around labels 12th–13th and 23rd–24th signifies two
different thicknesses for essentially the same 1ρ̄ value (i.e. same initial jet, bottom
and top densities). This allows a comparison between the experimentally measured
critical lengths for different layer thickness: examination of L∗e in figure 5(a) shows
that this quantity decreases with decreasing layer thickness (note that this effect is
less noticeable in figure 5b). This is essentially in agreement with the optimal mixing
property: these data refer to increasingly sharper stratifications appear to limit to
the theoretical optimal mixer depicted by the solid curve in figure 5(b); thus this
particular data trend seems to be in agreement with our theoretical understanding.

Further, figure 5 depicts theoretical curves obtained using different constants α

and λ to test sensitivity on these parameters, starting with values that have been
empirically established (see e.g. Fischer et al. 1979). In figure 5(a,b) we have plotted
the theoretical results using λ = 0.88 and λ = 1.2 (Kaminski, Tait & Carazzo 2005).
While in figure 5(a) varying λ over these values shows strong variation in the
predicted critical distance L∗m, the sensitivity is much weaker in figure 5(b) for the
prediction employing the nonlinear jump conditions. In fact, L∗ is a monotonically
decreasing function of λ, and L∗(λ=1.2) < L∗(λ=0.88) < 1.075L∗(λ=1.2), so that the critical
distance is essentially insensitive to λ in this range for figure 5(b), while agreeing
well with the experimental data. The same lack of sensitivity cannot be claimed
for the entrainment parameter α, as can be seen in figure 5, where both the plume
entrainment value α = 0.0833 and intermediate (between jet and plume) entrainment
value α = 0.0684 are compared, though again with figure 5(b) still showing less
sensitivity. Further discussion of the role of entrainment modelling, particularly using
the nonlinear, local Richardson-number-dependent entrainment law introduced by
Priestley & Ball (1955), as well as the effect of continuous stratification is reported
below in § 4.3.

4.2. Demonstration of optimal mixer and a wall effect
We demonstrate experimentally the predicted optimal mixing by comparing the
behaviour of turbulent buoyant jets in sharp versus smoother stratification profiles in
our optimality class. The two profiles focused upon are depicted in figure 4. Recall,
as described above in § 3, that in each case the jet is positioned to have the same
background density value at the nozzle location and, by careful design, to have the
same distance between the nozzle and L1 (11.2 cm). Our theory presented above
in § 2.6 shows that, for any nozzle distance L smaller than the theoretical critical
distance, with L6L∗, the sharp two-layer profile is the optimal mixer when compared
to any profile in our class of density functions in (2.45). As such, to experimentally
demonstrate this result, and to document that the smoother profile is a weaker mixer
than the step-like profile, this distance is selected so that the jet in the sharper profile
will be positioned just nearer than its critical distance, and the results compared.



(a)

(b)

FIGURE 6. (Colour online) Fresh-water dyed jets: (a) smooth ambient density stratification
depicted in figure 4; (b) sharp density profile from same figure. Length scales are provided
by the outer nozzle diameter of 0.657 cm as well as by metric rulers on the tank sides.
Note the extra mixing associated with the sharp density profile.

The jets are fired at the same flow rate of 15 ml s−1 for the same duration of 45 s,
and then turned off to make the comparison. In figure 6 the images of the two
different cases are shown after the jets have been turned off and the tanks have
settled. Figure 6(a) is the case of the smoother profile, and figure 6(b) is the case
with the sharp profile. Clearly, in figure 6(a) the jet has escaped with the majority
of the dyed (blue) fluid residing just below the free surface, while in figure 6(b)
much of the fluid is trapped well below the free surface. Also, clearly, figure 6(a)
has experienced less mixing than figure 6(b), and this demonstrates the optimality
result. We comment that there is always concern for the role that the error bars
play in making such sweeping statements, particularly in regards to making absolute
statements about total mixing. We further examine this issue below in § 4.3.

It is interesting to note that figure 6(a,b) clearly exhibits a small accumulation of
trapped jet fluid at the transition layer. This arises from the slow trickle of leaking
jet fluid entering the tank after the jet is stopped, since this is done by closing a
three-way valve that leaves some residual fluid in the feeding line, which then slowly
leaks into the tank. An interesting question would be to consider why this fluid traps
at all, given that it moves upwards through the bottom layer in an essentially laminar
motion. We conjecture that the different physics of laminar enhanced diffusivity is
at play in this regime, and this enhancement is responsible for the small volume of



(a) (b)

FIGURE 7. (Colour online) Documentation of a wall effect. (a) The wall case apex reaches
the free surface, while the centred jet (b) has apex well below the free surface. Snapshots
are taking during the injection phase, and case (b) selected at the maximum jet penetration.
See text for parameters.

trapped fluid from the leaking lines seen in the experiments; we will explore this effect
in future work.

We lastly observe that entrainment can be reduced by close proximity of the
injection to walls through a third set of experiments, which agrees with the breakdown
of the assumptions underlying the mathematical model in this case. We have tested
proximity effects and found these to be negligible for nozzle locations more than
10 cm away from the bottom and lateral walls of our tank. An example of strong
wall effect is shown in figure 7(a) where an overshoot of the jet fluid with respect to
trapping for the same set-up as in figure 7(b) can be observed. The jet near the wall
actually reaches the free surface, whereas the jet at the tank centre has apex height
well below the free surface for all other similar experimental parameters. We discuss
sensitivity issues regarding error bars in these fixed experimental parameters below
in § 4.3.

We remark that while it may appear obvious that less background fluid entrainment
is available to the jet in the case close to a lateral wall, we emphasize that such
turbulent mixing is subtle: the wall also provides extra drag, which is non-trivial to
quantify a priori if it increases or reduces overall mixing. For our cases studied, this
clearly documents that the effect of the wall can reduce overall mixing. We also
remark that this wall effect on entrainment distinguished our studies from studies such
as those in slit geometries (Wallace & Sheff 1987; Noh et al. 1992; Ching et al. 1993)
for which the jet originated from a floor or a ceiling, which clearly would have similar
effects as a vertical wall on entrainment.

4.3. Alternative entrainment modelling, and role of smooth stratifications
Here, we examine two natural improvements to our analytical theory, which will
require some numerical assistance. The first targets improvement of entrainment
modelling, and the second takes into account the finer structural details of the smooth
background density stratification. Improvements to entrainment modelling within the
MTT system have been proposed in the literature in the detailed functional form
of the entrainment coefficient α (see e.g. Fischer et al. 1979; Kaminski et al. 2005;
Carazzo, Kaminski & Tait 2006). We examine this issue in the context of our study.

We note that, for the experiment documenting the optimality of the two-layer
stratification, the initial velocities are considerably higher than our full data above,
and consequently the turbulent flow is closer to the jet-dominated limit initially. As



such, to utilize the theoretical formulae to predict the critical distance, a different
entrainment coefficient is needed. Applying our formula (2.29) with α = αp ≡ 0.0833,
the critical distance for these parameters is L∗ = 6.06 cm, whereas using the
jet entrainment value of 0.0535 produces a slightly more reasonable value of
L∗ = 9.29 cm, recalling that the experimental critical distance in this case satisfies
L∗e > 7.8 cm when measured between the nozzle and L90 for that case. To further
improve the prediction in this intermediate regime between jet- or plume-dominated,
a different entrainment model could be needed, as described in Fischer et al. (1979).

The experiments conducted and the initial data selected in the MTT model have
both M0 and B0 non-zero (and positive). (This further indicates that the behaviour
of this study is neither a pure jet nor a pure plume, but a transition from buoyant
jet to pure plume.) A key physical quantity that depicts this transition is the local
Richardson number (Fischer et al. 1979; Hunt & Kaye 2005; Kaminski et al. 2005;
Carazzo et al. 2006; Hunt & van den Bremer 2010), defined as

Ri(z)=
[

4
√

2πλ2

1+ λ2

(
gbθ
w2

)]1/2

. (4.1)

Note that, as w→∞, Ri→ 0 corresponding to a pure jet, while w→ 0, Ri→∞
corresponds to a pure plume. It can be seen that in a homogeneous environment
the far-field asymptotic relation yields a limiting Richardson number (independent

of z), which takes the value
√

16α
√

2π/(5(λ2 + 1))' 0.5131, when using the values
α = αp ≡ 0.0833 and λ = 1.2. Experimentally, Wang & Law (2002) measured the
Richardson number ‘just after the jet flow became steady in clear ambient water’.
Those authors claim the measurement to be taken within the asymptotic plume region,
and the measured constant, called the plume Richardson number, Rip, was reported
to be 0.584 (Wang & Law 2002). Similarly, a value of 0.557 is reported in Fischer
et al. (1979). Priestley & Ball (1955) report that α is proportional to the square of
the local Richardson number, and hence a more appropriate entrainment function is

α = αj − (αj − αp)

(
Ri(z)
Rip

)2

, (4.2)

where αj ' 0.0535 and αp ' 0.0833.
Several interesting points emerge from our analysis. Firstly, the ratio of the local

Richardson number to the constant-plume Richardson number, Rip, should asymptote
to unity at large distances for the model to be self-consistent. As just discussed, with
a constant entrainment model, this constant is approximately 0.51, for the plume
entrainment coefficient. It could be expected that the model in homogeneous ambient
background fluid with nonlinear entrainment should match this, i.e. the asymptotic
limit of the local Richardson number in the MTT system with nonlinear entrainment
law (4.2) and a homogeneous ambient fluid would produce this self-consistent
theoretical limit, and as such we will take Rip ≡ 0.51 for simplicity.

This limit does not appear amenable to an exact calculation, as the classical
compendium of solvable differential equations by Kamke (1944) indicates that this is
not among the known analytically separable ordinary differential equations (ODEs).
Hence the equivalent to the exact hypergeometric function used in our paper seems
unavailable. One alternative is to assume power-law dependence of the evolving
variables as a formal means to access this asymptotic large-distance limit. This
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FIGURE 8. (Colour online) Critical height predictions with constant and variable
entrainment coefficients, α. (a) The L∗m computed numerically and extended to variable
entrainment in homogeneous background density. (b) The same for L∗ employing jump
condition. Both panels compare with data and prediction from figure 5.

indeed produces the same result and is derived in appendix D (numerical ODE
integration, discussed next, additionally confirms that the limit of local Richardson
number indeed approaches '0.51 for large distances).

Numerical ODE integration is required to make critical length predictions with the
addition of nonlinear entrainment (as well as continuous stratification). We use both a
fourth-order Runge–Kutta solver as well as the routine NDSolve in Mathematica for
the simulations described next.

We next explore numerically the role of nonlinear entrainment in modifying
the predictions of the critical length. Shown in figure 8 are numerical computations
predicting the critical heights, L∗m and L∗, but using the variable coefficient entrainment
law in (4.2). In figure 8(a), the critical height is computed by solving in a
homogeneous ambient with nonlinear entrainment for the height at which the jet
density matches the top density. In figure 8(b), we do the same, except we formally
impose density jump conditions, assuming all other variables are continuous (this
property was rigorously established above but for the case of constant entrainment).
These new predictions using variable entrainment increase the prediction of the critical
length over those given with constant entrainment (which are also shown in figure 8).
Also, figure 8(a,b) shows a tendency for the nonlinear entrainment prediction to
approach those of constant entrainment as the normalized density difference 1ρ̄
increases to its maximum 1ρ̄ = 1 (in the limit ρj→ 0, 1ρ̄ approaches unity). This
property is consistent if the local Richardson number Ri(z) approaches its limit Rip
faster with larger 1ρ̄, which is observed in computations.

Next, we explore the additional effects of including the detailed knowledge of the
actual smooth background density to further improve the predictions of the observed
L∗e . We mimic the step-like experimental density profile with an error function (the
fixed-time solution of the heat equation between two limiting densities) with suitably
selected parameters. We numerically integrate the MTT system with this continuous
stratification and with or without nonlinear entrainment. For smooth transitions, the
criterion used in these studies is to bracket the true critical length by monitoring the
jet density as it evolves with respect to height. The numerical evidence of existence



ρb L∗90 with αp L∗90 with variable α L∗ with αp L∗ with variable α

1.0416127 1.42 2.26 2.42982852 3.20767
1.05357461 2.18 3.07 3.188236209 4.00026
1.10814559 4.78 5.57 5.793910129 6.46318

TABLE 1. The critical length L∗90 from the nozzle to L90 with background profile
modelled by a complementary error function of thickness 2 cm: column 2 uses a constant
entrainment coefficient αp = 0.0833; column 3 uses the nonlinear entrainment law. The
theoretical step-based critical length L∗: column 4 is with αp; column 5, is the same as
column 4 but with nonlinear entrainment law.

ρb L∗90 with αp L∗90 with variable α L∗ with αp L∗ with variable α

1.0416127 2.32 3.11 2.42982852 3.20767
1.05357461 3.08 3.91 3.188236209 4.00026
1.10814559 5.69 6.37 5.793910129 6.46318

TABLE 2. As in table 1, with but with thickness 0.2 cm.

is demonstrated by the numerical solution being computable up to large distances (up
to z= 1020, using Mathematica’s NDSolve program, as well as our own Runge–Kutta
fourth-order ODE solver, with smaller heights). Numerical evidence of breakdown
is used to provide an upper bound of the critical length and a bisection strategy
is used to narrow the gap between breakdown and existence until an accuracy of
0.1 % for the critical length is reached. Tables 1 and 2 present data comparing these
effects. In table 1, the layer thickness is 2 cm, while in table 2 the layer thickness is
0.2 cm. In both tables, we label L∗90 as the distance between the nozzle location and
the position L90 of the smooth profile under the threshold criterion specified above
and we indicate explicitly whether this was done with constant entrainment, αp, or
variable entrainment. Also listed in the tables are the critical heights calculated with
both constant and variable entrainment in sharp stratification, as shown in figure 8.
In table 1, for constant entrainment (αp = 0.0833), the role of a smooth background
density yields critical lengths which are generally about 1 cm shorter than L∗ as
well as approximately 1 cm below the L90 experimental data seen in figure 8(b). In
contrast, L∗90 with variable entrainment restores agreement with the data, and seems
also to do the same with respect to the theoretical L∗, which uses nonlinear jump
conditions, but constant plume entrainment. Table 2 shows strong agreement with the
theory for L∗ and L∗90 with constant plume entrainment, as well as strong agreement
between the variable entrainment L∗90 with its variable entrainment L∗ counterpart.
This, however, shows that the agreement in table 1 between L∗ and L∗90 with variable
entrainment and the experimental data has to be interpreted judiciously, given that it
is a result of the particular stratification thickness length scale in both in silico and
actual experiments. We remark that in actual experiments layer thicknesses smaller
than 1.4 cm are not accessible with our current set-up, and hence table 2 does not
have an experimental comparison.

We close this subsection with a remark about the use of nonlinear entrainment in
stratified fluids. We are not aware of any reference that makes the case for applying
such entrainment laws for the strong background density stratification which we have
considered for most of our studies. Thus, as perhaps expected, the agreement observed



above can be used to confirm that the most faithful model would be offered using both
nonlinear entrainment and smooth density transitions. However, this set-up is hardly
amenable to compact analytical predictions.

4.4. Sensitivity analysis within variable density and entrainment MTT system
Assessing the effectiveness of theoretically based conclusions in predicting actual
experimental outcomes that are subject to error bar fluctuations is a fundamental
question for any forecast. To this end, we now utilize the MTT model using both
constant and variable entrainment with continuous background stratification to address
sensitivity in its predictions as regards unavoidable small variations in experimental
parameters, focusing primarily on effects of initial densities and layer thicknesses.

We first consider the optimal experiments presented above in § 4.2, and error bars
in the initial jet densities. Recall that we presented a study documenting that the
sharp stratification experiences greater mixing than the case with a carefully designed
smooth background profile. A natural question would be to ask if that ordering
extends over the entire error bar window of possible density values. We will use the
full MTT system, varying initial parameters, to explore the theoretical sensitivity of
the optimal mixing result. Assuming an initial jet density error bar of 0.0007 g cm−3

as in our experiments, we integrate numerically system (2.1) with density profiles
given by interpolation of the data presented in figure 4. Starting with the highest error
bar limit, with an initial jet density of 0.9984 g cm−3, the numerical integration with
variable entrainment predicts that the evolving jet density reaches the position L1 with
a density value 1.04767 g cm−3 in the sharp case and 1.03921 g cm−3 in the smooth
case, respectively. Next, with the lower initial jet density of 0.9977 g cm−3, the
corresponding values are 1.04766 and 1.03911 g cm−3 for the respective sharp and
smooth cases. From these outcomes, it can be seen that the evolving density at L1 is
essentially insensitive to this variation of initial jet density. Moreover, this also shows
the effectiveness of the stratification sharpness in adding extra mixing right after the
density step at L1. Compared to the initial jet density variation of 0.0007 g cm−3,
the additional mixing for the sharp case is approximately 0.0085 g cm−3. Also, the
initial density variation is effectively suppressed in either sharp or smooth cases.
These observations are just about the best that can be done within the simplification
afforded by the MTT model and further confirms our optimal mixing conclusions
in § 4.2 along with the theoretical ‘mixing quantum’ associated with the step that
we predicted. Finally, we emphasize in all cases that these densities are consistent
with the experimental outcomes depicted in figure 6: it can be noticed that the sharp
case has red fluid spread throughout the entire top layer, in accordance with the
weak escape for which density difference ρtop − ρj(L1) = 0.0015 g cm−3. This is
close to an order of magnitude smaller than in the smooth case, which experiences
strong escape, in agreement with the model predicting ρtop − ρj(L1) = 0.01 g cm−3.
Further improvements could only be achieved by either an even more laborious
experimental campaign and/or a fully resolved direct numerical simulation of the
complete Navier–Stokes system.

Lastly, we perform a similar analysis applied to the case of the wall effect
documented in § 4.2 in which the largest error fluctuation comes from the differences
in the background layer thicknesses. The jet near the wall had a layer thickness scale
of 3.9 cm while the jet in the interior had a layer thickness scale of 2.3 cm. In order
to assess how these variations affect the jet mixing and hence support the conclusion
that the role of the wall is dominant in reducing the overall mixing, we repeat the



programme outlined above. This time, we run two cases, holding all parameters for
each different jet as explicitly reported at the end of § 3; in particular, we assign the
different layer thickness scales through the parameters of an error function density
profile and compare the predicted apex heights. In both cases, the apex height was
well below the free surface (using variable entrainment, with jet density initially
0.9977 g cm−3), reaching below the free surface 15.46 cm in the thicker case, and
14.25 cm in the sharp case, respectively. These are clear trapping cases, in contrast
with the experimental observation for the jet near the wall (the thicker case actually
penetrated further because it was initially a bit further from L90 than the sharper
case, as reported above in § 3). We remark that the agreement for the apex height
can only be qualitative for the MTT model with variable entrainment given by (4.2).
As proposed by Kaminski et al. (2005) and Mehaddi et al. (2013), the entrainment
when negative buoyancy is reached should be modelled by a reduced entrainment
coefficient possibly leading to a different higher apex than the one predicted with the
original MTT system.

4.5. Application to the Deep Water Horizon (DWH) oil spill
The optimal mixing property of two-layer profiles can be used to provide rigorous,
yet compact, closed-form bounds for the minimum distance that jets travel to reach a
neutrally buoyant location in other classes of, not necessarily sharply stratified, density
profiles. Interestingly, one can even consider, as an application, the very real case of
the DWH oil spill in the Gulf of Mexico in 2010. Because of high temperatures, high
velocities and the use of dispersants, the oil spill can be modelled as an emulsion
(of several hydrocarbon species) able to mix with ambient fluid (for an experimental
example of miscible emulsions, see e.g. Adalsteinsson et al. (2011)).

By substituting the relevant parameters into our formula for L∗, a lower bound
for the trapping location can be established as follows. First, we set all relevant
parameters in our model to match those made available through the oil spill field
data report by Mariano et al. (2011); thus the pipe radius is set to r0 = 20 cm,
the volumetric flow rate to Qe = 1.2 × 105 cm3 s−1, the mean injection velocity to
w0 = Qe/(πr2

0) cm s−1, and the mean jet density to ρj = 0.85 g cm−3. In order
to assign the top density ρt required to apply our theory, we select a density
from the range of values reported in ocean soundings from stations 20 and 25
reported by the NOAA Joint Analysis Group (2011). The bottom density ρb is
fixed to match that reported at the well head depth, ρb = 1.02774 g cm−3. By
varying ρt, we can construct the critical distances L∗ and plot them as a function
of ρt. In figure 9, the original density profile and fluorocarbon concentration
(station 20 red, station 25 black) from the NOAA Joint Analysis Group (2011)
report are reproduced, and the density profile interpolated using a quadratic law,
ρ(z) = 1027.7427 − 5.31867 × 10−7 (z − 100.943)2 kg m−3, with vertical origin
corresponding to the depth of 1600 m as in the NOAA report’s graph. This
interpolation is achieved by extracting the background density values at two locations,
the well head depth at 1499.06 m and the 800 m depth point, by converting pixel
values in the original NOAA report to depths using the length scales reported in the
plot. The quadratic interpolation function is superimposed in the plot and depicted by
a thin red curve. Also shown in figure 9 is the curve L∗ as a function of the density
variable ρt, decreasing from ρb within the reported density range. The intersection
of this curve L∗(ρt) with the quadratic density profile ρ(z) determines a key depth
location, shown as the orange horizontal curve.
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FIGURE 9. (Colour online) Local ocean stratifications (by potential density) in the DWH
spill at different stations (green and blue) and concentration of hydrocarbons in the water
column above the well head (red and black), all from NOAA Joint Analysis Group
(2011). Critical distance L∗ as a function of ρt (orange), varying from the surface density
'1.025 g cm−3 to the maximum density at the well head '1.02774 g cm−3, using the
entrainment coefficient, α= 0.0833. The horizontal dash-dotted line marks the intersection
depth L∗ with ambient density.

The construction of the lower-bound estimate for the trapping height is obtained
by considering auxiliary density profiles as illustrated by figure 10(a–c). For a ρt
sufficiently small so as to be close to the initial jet density, the critical length L∗
for the first auxiliary step density profile ρaux1, shown in figure 10(a), is small (in
fact, approaching zero as ρt → ρj(0)) so that the height L defined by ρ(L) = ρt
is certainly larger than L∗. The second auxiliary density profile ρaux2, depicted in
figure 10(a) and constructed piecewise by connecting a segment of ρ(z) with the
step at L∗ down to density value ρt, lies within our comparison class of allowable
profiles for optimal mixing. This assures that the jet density at L∗ is definitely smaller
than ρ(L∗), since, by our optimality proof, ρj(L∗) < ρaux2(L∗) < ρaux1(L∗), where the
first inequality follows from the mixing quantum of the second auxiliary profile
step. Since ρ(L∗) > ρ(L) ≡ ρt by monotonicity of the background profile, the jet is
still lighter than the background at L∗ and true trapping depth can only be above
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FIGURE 10. (Colour online) Auxiliary profiles used for the construction of the rigorous
greatest lower bound for trapping height (distance above the well head). See text for
details regarding the definition of the functions and scales. Vertical and horizontal scales
are chosen in accordance to the NOAA Joint Analysis Group (2011) data.

L∗. This lower-bound height construction can clearly continue by varying ρt > ρj(0)
until the situation shown in figure 10(b) occurs, when L∗ = L. At this point we
have the supremum of all lower bounds L∗(ρt), which provides our rigorous estimate
of the trapping depth least upper bound (or greatest lower bound for trapping in
terms of height above the well head) shown in figure 9 as the orange horizontal line.
Figure 10(c) shows that this bound cannot be further improved, at least within the
rigorous mathematical approach we have implemented, as the auxiliary function ρaux2
no longer belongs to the admissible comparison class of density profiles.

When the procedure outlined above is applied to the actual NOAA data and the
interpolation density ρ(z) extracted from the data, the rigorous least upper bound on
the trapping depth is 1302 m. We observe that this depth is just below the depth of
the largest fluorometry peak seen in the NOAA data, as shown in figure 9.

A simple non-rigorous prediction could of course be obtained based on treating the
ambient ocean density as a constant, set at ρb, and then finding the depth at which
the evolving jet density matches the actual ocean density. This depth is 1242.97 m,
computed with the plume entrainment constant.

Of course, the full MTT model can also be numerically integrated with the quadratic
density profile and trapping depths determined by matching the evolving jet density
with that of the background (provided this occurs within the interpolation range below
800 m depth). With a plume entrainment coefficient, this produces a trapping depth of
1232.12 m. For comparison, running the same MTT model with the jet entrainment
coefficient yields a trap depth of 1198.35 m. Conversely, using the Richardson-number-
dependent entrainment coefficient in the numerics yields a trap depth of 1228.99 m.
Hence, we can clearly see that the rigorous least upper bound on depth we provide is
a reasonable and robust estimate, at least within the MTT theory in all these variants
for entrainment parametrizations.

5. Discussion and conclusions
The MTT reduced models we have studied attempt to replace the complete jet

dynamics by a finite set of collective variables for jet width, density and speed using



an entrainment hypothesis. The rigorous mathematical results obtained here for both
the top-hat and Gaussian profile closures concisely establish the two-layer stratification
as being the optimal mixer over a class of suitably selected stable stratifications,
despite complications arising in the Gaussian closure in which two-layer steps are not
optimal for very short propagation distances. We remark that the two-layer stratified
top-hat model performs poorly in predicting the critical distance data presented
in figure 5, with that theory typically underpredicting the observed experimental
critical distance, L∗, by 30 %. This certainly justifies the need for Gaussian plume
models after some initial short entry length. In future investigations, we hope to
explore improvements to the model that address some of these complications by
implementing more robust profile closure assumptions that merge an initial top-hat
model transitioning to a Gaussian model over suitable length scales.

With our study of the MTT model in this work, prior jet/plume escaping
criteria in the literature (Caulfield & Woods 1998; Kaye & Scase 2011) are now
proven rigorously. However, these criteria rely on a sufficiently large decay rate
of the ambient density transition. Less was known about critical lengths in sharp
stratifications. To the best of our knowledge, the analysis and data presented here
are the first comprehensive study demonstrating a critical trapping phenomenon in
these settings. In future work, we will attempt to extend our theory to applications
beyond the ones described here, to include other relevant ocean settings, such as
accumulations of ‘marine snow’ particulates at strong density stratification regions as
reported by MacIntyre, Alldredge & Gotschalk (1995).
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Appendix A. Derivation of critical distance with jump condition

Introducing new variables Φ = (w/θ)2 and Ψ = 1/θ , (2.28a,b) become

dΦ
dz
= 4gλ2Ψ,

dΨ
dz
=
(

2α√
γ1

)
Φ1/4. (A 1a,b)

Dividing the two equations and separating variables yields the conserved quantity

Ψ 2 =
(

4α
5
√
γ1gλ2

)
Φ5/4 + A for z< L. (A 2)



Imposing initial conditions determines A= θ−2
0 − 4αw̄2

0/(5gλ2b̄0θ
3
0 ), where w̄0, θ0 and

b̄0 are the initial conditions for the system (2.28). By using the conserved quantity we
immediately arrive at formula (2.34) for z as a function of the density anomaly.

The critical distance z∗ separating escaping from trapping is selected by the upper
limit of integration Φf in (2.34), which makes γ2 = 0. We use condition (2.37) and
continuity of b and w to determine Ψ (z∗)=Λ/θf from

γ2 = γ1 − lim
z→L−

(θf /Λ)b2w(z)= γ1(1− (θf /Λ)Ψ (z∗))= 0, (A 3)

so that by (A 2) the critical upper limit of integration is

Φf =
(
Ψ (z∗)2 − A

a

)4/5

=
(

Λ2ρ2
b

a(ρb − ρt)2
− A

a

)4/5

. (A 4)

(Note that the lower limit of integration in (2.34) is selected in terms of the initial
conditions.)

Appendix B. Integral solution to linear ambient profile (2.38)

We denote the MTT model with linear ambient density profile as

Q′l = 2αM1/4
l , M′l = 4gλ2QlBl, B′l =−N2Ql, (B 1a−c)

where the constant buoyancy (Brunt–Väisälä) frequency is N2=−ρ ′a/(Λρb), and initial
conditions are defined as (2.36). Taking the ratio of (B 1b) and (B 1c) yields

dBl

dMl
=− N2

4gλ2Bl
, (B 2)

whence a conservation relation for Ml and Bl follows:

2gλ2B2
l =−N2Ml +CB. (B 3)

Here the integration constant is positive, CB ≡ N2M0 + 2gλ2B2
0 > 0. By (B 3), Ml =

(CB − 2gλ2B2
l )/N

2. Similarly, taking the ratio of (B 1a) and (B 1c) yields

dQl

dBl
=−2αM1/4

l

N2Ql
. (B 4)

By separation of variables,

Ql =
(

Q2
0 −

4α
N5/2

∫ Bl

B0

(N2M0 + 2gλ2B2
0 − 2gλ2r2)1/4 dr

)1/2

, (B 5)

where Ml is replaced by Bl through (B 3). The exact inverse integral solution (2.38)
then follows. Selecting Bl = 0 yields the neutral buoyant height, whereas, by letting
Ml = 0, relation (B 3) yields Bl =−

√
CB/(2gλ2) to give the apex height.



Appendix C. Long critical distance asymptotics

Using the relation Qh ∼ C1B1/3
0 z5/3, a long-distance asymptotic relation for L∗m can

be derived by solving for z,

Qθ =Q(z)(ρb − ρj(z))/ρb ∼C1B1/3
0 z5/3(ρb − ρj(z))/ρb = B0, (C 1)

and imposing ρj(z)= ρt. This leads to the relation

L∗m = (Q0/Λ)
2/5(C1θf )

−3/5(1ρ̄)2/5, (C 2)

which can be viewed as another formula for the critical distance without any fitting
parameter, and agrees well with large values of L∗m, since the asymptotic relation of Q
adapted here is valid only when the distance travelled is large enough. This asymptotic
relation can also be derived by theoretically sending the density difference ρb − ρt to
zero, i.e. θf → 0, since in that case L∗m→∞. Calculating the limit limθf→0 L∗m/θ

−3/5
f =

(Q0/Λ)
2/5(C1)

−3/5(1ρ̄)2/5 yields the relation above. A similar calculation on L∗ can
also be done and yields the result

L∗ ∼Λ1/5Q2/5
0 (C1θf )

−3/5(1ρ̄)2/5 as θf → 0. (C 3)

We remark that neither of these two scaling relations, while properly asymptotic, fit
our experimental data on account of the critical distances not being large enough for
the parameters studied to reach this asymptotic regime.

Another interesting long-distance asymptotic relation focusing on a linear-constant
profile is the following: for a pair of densities (ρb, ρt), a linear-constant profile is
characterized by a length scale L,

ρa(z)=
{
ρb − (ρb − ρt)z/L, z ∈ [0, L],
ρt, z ∈ [L,∞). (C 4)

It can be shown by the optimal mixing result that zne =∞ if L 6 L∗. However, by
studying the exact formula (2.38), one can show that zs ∼CL3/8 as L→∞ for some
positive constant C, i.e. the ordering zne < zs < L holds for L large enough, and hence
the plume will trap. We remark that this result agrees with the original similarity
trap height scaling laws presented in Morton et al. (1956), Caulfield & Woods (1998)
and Woods (2010). In future studies, we will explore families of nonlinear density
profiles sandwiched between these ‘linear-constant’ functions and step transitions. We
conjecture that the breakdown point, zs, will exhibit scaling properties in the large-L
asymptotic limit, but these cases are complicated by similar competing effects such
as those documented in figure 3. Candelier & Vauquelin (2012) presented a matched
asymptotic expansion for the MTT in a homogeneous ambient density. We remark
that their formulae when applied in a similar fashion for obtaining L∗m, when using the
complete, uniformly valid expansion (for large/small Richardson number) would offer
an alternative to our use of the exact hypergeometric integral. However, this does not
seem to offer a substantial simplification unless use of the outer/inner solution alone
can be justified. It would be interesting to try to extend this matched asymptotic
analysis to more general density profiles as well as variable Richardson-number
entrainment, where an exact solution is not available in homogeneous background.



Appendix D. Power-law asymptotic relation for variable coefficient entrainment

In a homogeneous background density profile, if the entrainment coefficient α
in (2.1a) is replaced by the entrainment law (4.2),

α = αj − (αj − αp)

(
Ri(z)
Rip

)2

, (D 1)

among the power-law functional relationships, we will show below that the only ones
consistent are b, w and θ given by b∼ (6αpz/5), w∼ (25gλ2B0/24α2

p)
1/3z−1/3 and θ ∼

(625B2
0/1944gλ2)1/3z−5/3. In fact, for these power laws, the local Richardson number

approaches a limit

Ri(z)→ Rip =
√

16αp

√
2π/(5(λ2 + 1))' 0.5131, (D 2)

when using the values αp = 0.0833 and λ= 1.2, as z→∞.
To establish this result, suppose b ∼ Cbzpb , w ∼ Cwzpw and θ ∼ Cθzpθ , as z→∞.

It follows that Ri(z)∼ CRizpb+pθ−2pw , where Cb, Cw, Cθ and CRi are constants, and pb,
pw and pθ are exponents. These exponents of z in the MTT system (2.1) need to be
balanced, and of the three possibilities evident from the volume equation,

d(b2w)
dz
= 2

(
αj − (αj − αp)

(
Ri(z)
Rip

)2
)

bw, (D 3)

only the equality pb + pθ − 2pw = 0 is consistent with the system in a homogeneous
background density. Under this condition, the exponent triplet is (pb, pw, pθ) =
(1,−1/3,−5/3). This relation also implies Ri→ Rip as z→∞.
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