6,834 research outputs found

    Chemistry of aminoacylation of 5'-AMO and the origin of protein synthesis

    Get PDF
    Much of our recent work has been a study of aminoacyl AMP derivatives. Elucidation of the character of aminoacyl AMP derivatives has made it obvious that AMP has characteristics which should allow it to preferentially catalyze the synthesis of L-amino acid peptides. The essential features which lead to this conclusion are that all l-amino acids (but not all D amino acids) when esterified to 5'-AMP preferentially (65 percent) distribute to the 3' position of the 5'-AMP; that esterification is predominantly at the 2' position; that 2', 3' diaminoacyl esters are readily formed; and that a peptide bond can be formed between adjacent 2',3' aminoacyl esters

    Toward an Improved Analytical Description of Lagrangian Bias

    Full text link
    We carry out a detailed numerical investigation of the spatial correlation function of the initial positions of cosmological dark matter halos. In this Lagrangian coordinate system, which is especially useful for analytic studies of cosmological feedback, we are able to construct cross-correlation functions of objects with varying masses and formation redshifts and compare them with a variety of analytical approaches. For the case in which both formation redshifts are equal, we find good agreement between our numerical results and the bivariate model of Scannapieco & Barkana (2002; SB02) at all masses, redshifts, and separations, while the model of Porciani et al. (1998) does well for all parameters except for objects with different masses at small separations. We find that the standard mapping between Lagrangian and Eulerian bias performs well for rare objects at all separations, but fails if the objects are highly-nonlinear (low-sigma) peaks. In the Lagrangian case in which the formation redshifts differ, the SB02 model does well for all separations and combinations of masses, apart from a discrepancy at small separations in situations in which the smaller object is formed earlier and the difference between redshifts or masses is large. As this same limitation arises in the standard approach to the single-point progenitor distribution developed by Lacey & Cole (1993), we conclude that a more complete understanding of the progenitor distribution is the most important outstanding issue in the analytic modeling of Lagrangian bias.Comment: 22 pages, 8 figures, ApJ, in pres

    Formation time distribution of dark matter haloes: theories versus N-body simulations

    Full text link
    This paper uses numerical simulations to test the formation time distribution of dark matter haloes predicted by the analytic excursion set approaches. The formation time distribution is closely linked to the conditional mass function and this test is therefore an indirect probe of this distribution. The excursion set models tested are the extended Press-Schechter (EPS) model, the ellipsoidal collapse (EC) model, and the non-spherical collapse boundary (NCB) model. Three sets of simulations (6 realizations) have been used to investigate the halo formation time distribution for halo masses ranging from dwarf-galaxy like haloes (M=10−3M∗M=10^{-3} M_*, where M∗M_* is the characteristic non-linear mass scale) to massive haloes of M=8.7M∗M=8.7 M_*. None of the models can match the simulation results at both high and low redshift. In particular, dark matter haloes formed generally earlier in our simulations than predicted by the EPS model. This discrepancy might help explain why semi-analytic models of galaxy formation, based on EPS merger trees, under-predict the number of high redshift galaxies compared with recent observations.Comment: 7 pages, 5 figures, accepted for publication in MNRA

    Measuring the Cosmic Equation of State with Counts of Galaxies

    Full text link
    The classical dN/dz test allows the determination of fundamental cosmological parameters from the evolution of the cosmic volume element. This test is applied by measuring the redshift distribution of a tracer whose evolution in number density is known. In the past, ordinary galaxies have been used as such a tracer; however, in the absence of a complete theory of galaxy formation, that method is fraught with difficulties. In this paper, we propose studying instead the evolution of the apparent abundance of dark matter halos as a function of their circular velocity, observable via the linewidths or rotation speeds of visible galaxies. Upcoming redshift surveys will allow the linewidth distribution of galaxies to be determined at both z~1 and the present day. In the course of studying this test, we have devised a rapid, improved semi-analytic method for calculating the circular velocity distribution of dark halos based upon the analytic mass function of Sheth et al. (1999) and the formation time distribution of Lacey & Cole (1993). We find that if selection effects are well-controlled and minimal external constraints are applied, the planned DEEP Redshift Survey should allow the measurement of the cosmic equation-of-state parameter w to 10% (as little as 3% if Omega_m has been well-determined from other observations). This type of test has the potential also to provide a constraint on any evolution of w such as that predicted by ``tracker'' models.Comment: 4 pages plus 3 embedded figures; version approved by Ap. J. Letters. A greatly improved error analysis has been added, along with a figure showing complementarity to other cosmological test

    Dark-Halo Cusp: Asymptotic Convergence

    Full text link
    We propose a model for how the buildup of dark halos by merging satellites produces a characteristic inner cusp, of a density profile \rho \prop r^-a with a -> a_as > 1, as seen in cosmological N-body simulations of hierarchical clustering scenarios. Dekel, Devor & Hetzroni (2003) argue that a flat core of a<1 exerts tidal compression which prevents local deposit of satellite material; the satellite sinks intact into the halo center thus causing a rapid steepening to a>1. Using merger N-body simulations, we learn that this cusp is stable under a sequence of mergers, and derive a practical tidal mass-transfer recipe in regions where the local slope of the halo profile is a>1. According to this recipe, the ratio of mean densities of halo and initial satellite within the tidal radius equals a given function psi(a), which is significantly smaller than unity (compared to being 1 according to crude resonance criteria) and is a decreasing function of a. This decrease makes the tidal mass transfer relatively more efficient at larger a, which means steepening when a is small and flattening when a is large, thus causing converges to a stable solution. Given this mass-transfer recipe, linear perturbation analysis, supported by toy simulations, shows that a sequence of cosmological mergers with homologous satellites slowly leads to a fixed-point cusp with an asymptotic slope a_as>1. The slope depends only weakly on the fluctuation power spectrum, in agreement with cosmological simulations. During a long interim period the profile has an NFW-like shape, with a cusp of 1<a<a_as. Thus, a cusp is enforced if enough compact satellite remnants make it intact into the inner halo. In order to maintain a flat core, satellites must be disrupted outside the core, possibly as a result of a modest puffing up due to baryonic feedback.Comment: 37 pages, Latex, aastex.cls, revised, ApJ, 588, in pres

    The mass function

    Get PDF
    We present the mass functions for different mass estimators for a range of cosmological models. We pay particular attention to how universal the mass function is, and how it depends on the cosmology, halo identification and mass estimator chosen. We investigate quantitatively how well we can relate observed masses to theoretical mass functions.Comment: 14 pages, 12 figures, to appear in ApJ

    Nonlinear stochastic biasing from the formation epoch distribution of dark halos

    Get PDF
    We propose a physical model for nonlinear stochastic biasing of one-point statistics resulting from the formation epoch distribution of dark halos. In contrast to previous works on the basis of extensive numerical simulations, our model provides for the first time an analytic expression for the joint probability function. Specifically we derive the joint probability function of halo and mass density contrasts from the extended Press-Schechter theory. Since this function is derived in the framework of the standard gravitational instability theory assuming the random-Gaussianity of the primordial density field alone, we expect that the basic features of the nonlinear and stochastic biasing predicted from our model are fairly generic. As representative examples, we compute the various biasing parameters in cold dark matter models as a function of a redshift and a smoothing length. Our major findings are (1) the biasing of the variance evolves strongly as redshift while its scale-dependence is generally weak and a simple linear biasing model provides a reasonable approximation roughly at R\simgt 2(1+z)\himpc, and (2) the stochasticity exhibits moderate scale-dependence especially on R\simlt 20\himpc, but is almost independent of zz. Comparison with the previous numerical simulations shows good agreement with the above behavior, indicating that the nonlinear and stochastic nature of the halo biasing is essentially understood by taking account of the distribution of the halo mass and the formation epoch.Comment: 34 pages, 11 figures, ApJ (2000) in pres

    HĂĄ alternativas ao uso dos transgĂȘnicos?

    Get PDF
    A existĂȘncia ou nĂŁo de alternativa ao uso de transgĂȘnicos capaz de satisfazer a demanda mundial por alimento e nutrientes Ă© uma questĂŁo que permanece aberta Ă  investigação cientĂ­fica.A importĂąncia dos transgĂȘnicos ainda nĂŁo estĂĄ bem fundamentada no conhecimento cientĂ­fico disponĂ­vel,em parte porque as conquistas e o potencial da agroecologia nĂŁo foram objeto de atenção cientĂ­fica suficiente

    The Effects of the Peak-Peak Correlation on the Peak Model of Hierarchical Clustering

    Get PDF
    In two previous papers a semi-analytical model was presented for the hierarchical clustering of halos via gravitational instability from peaks in a random Gaussian field of density fluctuations. This model is better founded than the extended Press-Schechter model, which is known to agree with numerical simulations and to make similar predictions. The specific merger rate, however, shows a significant departure at intermediate captured masses. The origin of this was suspected as being the rather crude approximation used for the density of nested peaks. Here, we seek to verify this suspicion by implementing a more accurate expression for the latter quantity which accounts for the correlation among peaks. We confirm that the inclusion of the peak-peak correlation improves the specific merger rate, while the good behavior of the remaining quantities is preserved.Comment: ApJ accepted. 15 pages, including 4 figures. Also available at ftp://pcess1.am.ub.es/pub/ApJ/effectpp.ps.g
    • 

    corecore