542 research outputs found

    Consumption and Convicts: Faunal Analysis from the Port Arthur Prisoner Barracks

    Get PDF
    This thesis will present a zooarchaeological analysis of the faunal remains excavated from the Port Arthur Prisoner Barracks in 1977. Originally constructed in 1830 following the establishment of the Port Arthur Penal Settlement, the Prisoner Barracks were continually occupied throughout the convict period, spanning 1830 – 1877. This thesis will examine both the faunal remains and the historical record to examine the evolution of subsistence practices at Port Arthur and within the broader network of probation stations upon Tasman’s Peninsula

    Fast Distributed Approximation for Max-Cut

    Full text link
    Finding a maximum cut is a fundamental task in many computational settings. Surprisingly, it has been insufficiently studied in the classic distributed settings, where vertices communicate by synchronously sending messages to their neighbors according to the underlying graph, known as the LOCAL\mathcal{LOCAL} or CONGEST\mathcal{CONGEST} models. We amend this by obtaining almost optimal algorithms for Max-Cut on a wide class of graphs in these models. In particular, for any ϵ>0\epsilon > 0, we develop randomized approximation algorithms achieving a ratio of (1ϵ)(1-\epsilon) to the optimum for Max-Cut on bipartite graphs in the CONGEST\mathcal{CONGEST} model, and on general graphs in the LOCAL\mathcal{LOCAL} model. We further present efficient deterministic algorithms, including a 1/31/3-approximation for Max-Dicut in our models, thus improving the best known (randomized) ratio of 1/41/4. Our algorithms make non-trivial use of the greedy approach of Buchbinder et al. (SIAM Journal on Computing, 2015) for maximizing an unconstrained (non-monotone) submodular function, which may be of independent interest

    A Fixed-Parameter Algorithm for the Max-Cut Problem on Embedded 1-Planar Graphs

    Full text link
    We propose a fixed-parameter tractable algorithm for the \textsc{Max-Cut} problem on embedded 1-planar graphs parameterized by the crossing number kk of the given embedding. A graph is called 1-planar if it can be drawn in the plane with at most one crossing per edge. Our algorithm recursively reduces a 1-planar graph to at most 3k3^k planar graphs, using edge removal and node contraction. The \textsc{Max-Cut} problem is then solved on the planar graphs using established polynomial-time algorithms. We show that a maximum cut in the given 1-planar graph can be derived from the solutions for the planar graphs. Our algorithm computes a maximum cut in an embedded 1-planar graph with nn nodes and kk edge crossings in time O(3kn3/2logn)\mathcal{O}(3^k \cdot n^{3/2} \log n).Comment: conference version from IWOCA 201

    CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells

    Get PDF
    Hepatitis C virus (HCV) infects cells by the direct uptake of cell-free virus following virus engagement with specific cell receptors such as CD81. Recent data have shown that HCV is also capable of direct cell-to-cell transmission, although the role of CD81 in this process is disputed. Here, we generated cell culture infectious strain JFH1 HCV (HCVcc) genomes carrying an alanine substitution of E2 residues W529 or D535 that are critical for binding to CD81 and infectivity. Co-cultivation of these cells with naïve cells expressing enhanced green fluorescent protein (EGFP) resulted in a small number of cells co-expressing both EGFP and HCV NS5A, showing that the HCVcc mutants are capable of cell-to-cell spread. In contrast, no cell-to-cell transmission from JFH1ΔE1E2-transfected cells occurred, indicating that the HCV glycoproteins are essential for this process. The frequency of cell-to-cell transmission of JFH1W529A was unaffected by the presence of neutralizing antibodies that inhibit E2–CD81 interactions. By using cell lines that expressed little or no CD81 and that were refractive to infection with cell-free virus, we showed that the occurrence of viral cell-to-cell transmission is not influenced by the levels of CD81 on either donor or recipient cells. Thus, our results show that CD81 plays no role in the cell-to-cell spread of HCVcc and that this mode of transmission is shielded from neutralizing antibodies. These data suggest that therapeutic interventions targeting the entry of cell-free HCV may not be sufficient in controlling an ongoing chronic infection, but need to be complemented by additional strategies aimed at disrupting direct cell-to-cell viral transmission

    Mephedrone pharmacokinetics after intravenous and oral administration in rats: relation to pharmacodynamics

    Get PDF
    Fe d'errates disponible a: http://​dx.​doi.​org/​10.​1007/​s00213-013-3283-6Rationale Mephedrone (4-methylmethcathinone) is a still poorly known drug of abuse, alternative to ecstasy or cocaine. Objective The major aims were to investigate the pharmacokineticsa and locomotor activity of mephedrone in rats and provide a pharmacokinetic/pharmacodynamic model. Methods Mephedrone was administered to male Sprague-Dawley rats intravenously (10 mg/kg) and orally (30 and 60 mg/kg). Plasma concentrations and metabolites were characterized using LC/MS and LC-MS/MS fragmentation patterns. Locomotor activity was monitored for 180-240 min. Results Mephedrone plasma concentrations after i.v. administration fit a two-compartment model (α=10.23 h−1, β=1.86 h−1). After oral administration, peak mephedrone concentrations were achieved between 0.5 and 1 h and declined to undetectable levels at 9 h. The absolute bioavailability of mephedrone was about 10 % and the percentage of mephedrone protein binding was 21.59±3.67%. We have identified five phase I metabolites in rat blood after oral administration. The relationship between brain levels and free plasma concentration was 1.85±0.08. Mephedrone induced a dose-dependent increase in locomotor activity, which lasted up to 2 h. The pharmacokinetic-pharmacodynamic model successfully describes the relationship between mephedrone plasma concentrations and its psychostimulant effect. Conclusions We suggest a very important first-pass effect for mephedrone after oral administration and an easy access to the central nervous system. The model described might be useful in the estimation and prediction of the onset, magnitude,and time course of mephedrone pharmacodynamics as well as to design new animal models of mephedrone addiction and toxicity

    Efficient algorithms for reconstructing gene content by co-evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a previous study we demonstrated that co-evolutionary information can be utilized for improving the accuracy of ancestral gene content reconstruction. To this end, we defined a new computational problem, the Ancestral Co-Evolutionary (ACE) problem, and developed algorithms for solving it.</p> <p>Results</p> <p>In the current paper we generalize our previous study in various ways. First, we describe new efficient computational approaches for solving the ACE problem. The new approaches are based on reductions to classical methods such as linear programming relaxation, quadratic programming, and min-cut. Second, we report new computational hardness results related to the ACE, including practical cases where it can be solved in polynomial time.</p> <p>Third, we generalize the ACE problem and demonstrate how our approach can be used for inferring parts of the genomes of <it>non-ancestral</it> organisms. To this end, we describe a heuristic for finding the portion of the genome ('dominant set’) that can be used to reconstruct the rest of the genome with the lowest error rate. This heuristic utilizes both evolutionary information and co-evolutionary information.</p> <p>We implemented these algorithms on a large input of the ACE problem (95 unicellular organisms, 4,873 protein families, and 10, 576 of co-evolutionary relations), demonstrating that some of these algorithms can outperform the algorithm used in our previous study. In addition, we show that based on our approach a ’dominant set’ cab be used reconstruct a major fraction of a genome (up to 79%) with relatively low error-rate (<it>e.g.</it> 0.11). We find that the ’dominant set’ tends to include metabolic and regulatory genes, with high evolutionary rate, and low protein abundance and number of protein-protein interactions.</p> <p>Conclusions</p> <p>The <it>ACE</it> problem can be efficiently extended for inferring the genomes of organisms that exist today. In addition, it may be solved in polynomial time in many practical cases. Metabolic and regulatory genes were found to be the most important groups of genes necessary for reconstructing gene content of an organism based on other related genomes.</p

    Effect of prenatal glucocorticoid treatment on size at birth among infants born at term gestation

    Get PDF
    ObjectiveTo determine whether prenatal treatment with a single course of glucocorticoids (GCs) affects size at birth among full-term infants independent of fetal size before GC administration or exposure to preterm labor (PTL).Study designIn all, 105 full-term infants were recruited into three study groups (30 GC treated; 60 controls matched for gestational age (GA) at birth and sex; and 15 PTL controls without GC exposure). Size of the infants was estimated before treatment using two-dimensional (2D) ultrasound and by direct measurement at birth.ResultsLength, weight and head circumference at birth were smaller among GC-treated infants compared with matched controls (P's&lt;0.01), although fetal size did not differ before treatment (P's&gt;0.2). Exposure to PTL did not account for this effect.ConclusionsPrenatal treatment with a single course of GCs was associated with a reduction in size at birth among infants born at term gestation. This effect cannot be explained by differences in fetal size before treatment or exposure to PTL
    corecore