2,738 research outputs found

    Applications of the Gauss-Bonnet theorem to gravitational lensing

    Full text link
    In this geometrical approach to gravitational lensing theory, we apply the Gauss-Bonnet theorem to the optical metric of a lens, modelled as a static, spherically symmetric, perfect non-relativistic fluid, in the weak deflection limit. We find that the focusing of the light rays emerges here as a topological effect, and we introduce a new method to calculate the deflection angle from the Gaussian curvature of the optical metric. As examples, the Schwarzschild lens, the Plummer sphere and the singular isothermal sphere are discussed within this framework.Comment: 10 pages, 1 figure, IoP styl

    Quantum Statistics and Slow Neutron Scattering by Gases

    Full text link
    A surprisingly simple expression in ``closed form'' for the cross section d2σ/dΩdÏ” for the scattering of thermal neutrons (including polarized neutrons) from an ideal quantum gas is derived. This result extends the work of Van Hove on the quantum gas. An expansion is obtained for dσ/dÏ”. The case of elastic scattering is treated separately. From these expressions is obtained a criterion for ignoring the statistics of the scatterer in favor of classical (Boltzmann) statistics. This criterion should have some validity for weakly interacting systems. It is shown that the effects of statistics on the neutron cross section for a helium‐4 gas range from 5% or less for the noninteracting gas up to as much as 40% for the interacting system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70882/2/JCPSA6-47-12-4923-1.pd

    Modelling the dynamical evolution of the Bootes dwarf spheroidal galaxy

    Full text link
    We investigate a wide range of possible evolutionary histories for the recently discovered Bootes dwarf spheroidal galaxy, a Milky Way satellite. By means of N-body simulations we follow the evolution of possible progenitor galaxies of Bootes for a variety of orbits in the gravitational potential of the Milky Way. The progenitors considered cover the range from dark-matter-free star clusters to massive, dark-matter dominated outcomes of cosmological simulations. For each type of progenitor and orbit we compare the observable properties of the remnant after 10 Gyr with those of Bootes observed today. Our study suggests that the progenitor of Bootes must have been, and remains now, dark matter dominated. In general our models are unable to reproduce the observed high velocity dispersion in Bootes without dark matter. Our models do not support time-dependent tidal effects as a mechanism able to inflate significantly the internal velocity dispersion. As none of our initially spherical models is able to reproduce the elongation of Bootes, our results suggest that the progenitor of Bootes may have had some intrinsic flattening. Although the focus of the present paper is the Bootes dwarf spheroidal, these models may be of general relevance to understanding the structure, stability and dark matter content of all dwarf spheroidal galaxies.Comment: 10 pages, 7 figures, accepted by MNRA

    Orientational Defects in Ice Ih: An Interpretation of Electrical Conductivity Measurements

    Full text link
    We present a first-principles study of the structure and energetics of Bjerrum defects in ice Ih and compare the results to experimental electrical conductivity data. While the DFT result for the activation energy is in good agreement with experiment, we find that its two components have quite different values. Aside from providing new insight into the fundamental parameters of the microscopic electrical theory of ice, our results suggest the activity of traps in doped ice in the temperature regime typically assumed to be controlled by the free migration of L defects.Comment: 4 pages, 4 Figures, 1 Tabl

    Stable manifolds and homoclinic points near resonances in the restricted three-body problem

    Full text link
    The restricted three-body problem describes the motion of a massless particle under the influence of two primaries of masses 1−Ό1-\mu and ÎŒ\mu that circle each other with period equal to 2π2\pi. For small ÎŒ\mu, a resonant periodic motion of the massless particle in the rotating frame can be described by relatively prime integers pp and qq, if its period around the heavier primary is approximately 2πp/q2\pi p/q, and by its approximate eccentricity ee. We give a method for the formal development of the stable and unstable manifolds associated with these resonant motions. We prove the validity of this formal development and the existence of homoclinic points in the resonant region. In the study of the Kirkwood gaps in the asteroid belt, the separatrices of the averaged equations of the restricted three-body problem are commonly used to derive analytical approximations to the boundaries of the resonances. We use the unaveraged equations to find values of asteroid eccentricity below which these approximations will not hold for the Kirkwood gaps with q/pq/p equal to 2/1, 7/3, 5/2, 3/1, and 4/1. Another application is to the existence of asymmetric librations in the exterior resonances. We give values of asteroid eccentricity below which asymmetric librations will not exist for the 1/7, 1/6, 1/5, 1/4, 1/3, and 1/2 resonances for any ÎŒ\mu however small. But if the eccentricity exceeds these thresholds, asymmetric librations will exist for ÎŒ\mu small enough in the unaveraged restricted three-body problem

    The construction of identities in narratives about serious leisure occupations

    Get PDF
    Engagement in occupation contributes to the shaping of identity throughout the human life. The act of telling about such engagement involves interaction based on symbolic meaning; the speaker constructing an identity by conveying how the occupation is personally meaningful. This study explored meaning in narratives told by people who engage in serious leisure occupations. A total of 78 narratives were extracted from interviews with 17 people who invest considerable time and other resources into their leisure. Analysis focused on the content, structure and performance of each narrative in order to explore meaning. The meanings were organised into a framework based around three dimensions: the located self, the active self and the changing self. Each dimension has facets that the individual might emphasise, constructing a unique identity. The framework offers a structured basis for conceptualising how occupation contributes to the shaping of the internalised self and the socially situated identity

    Attractiveness of periodic orbits in parametrically forced systemswith time-increasing friction

    Get PDF
    We consider dissipative one-dimensional systems subject to a periodic force and study numerically how a time-varying friction affects the dynamics. As a model system, particularly suited for numerical analysis, we investigate the driven cubic oscillator in the presence of friction. We find that, if the damping coefficient increases in time up to a final constant value, then the basins of attraction of the leading resonances are larger than they would have been if the coefficient had been fixed at that value since the beginning. From a quantitative point of view, the scenario depends both on the final value and the growth rate of the damping coefficient. The relevance of the results for the spin-orbit model are discussed in some detail.Comment: 30 pages, 6 figure

    Understanding uncertainty in temperature effects on vector-borne disease: A Bayesian approach

    Get PDF
    Extrinsic environmental factors influence the distribution and population dynamics of many organisms, including insects that are of concern for human health and agriculture. This is particularly true for vector-borne infectious diseases, like malaria, which is a major source of morbidity and mortality in humans. Understanding the mechanistic links between environment and population processes for these diseases is key to predicting the consequences of climate change on transmission and for developing effective interventions. An important measure of the intensity of disease transmission is the reproductive number R0R_0. However, understanding the mechanisms linking R0R_0 and temperature, an environmental factor driving disease risk, can be challenging because the data available for parameterization are often poor. To address this we show how a Bayesian approach can help identify critical uncertainties in components of R0R_0 and how this uncertainty is propagated into the estimate of R0R_0. Most notably, we find that different parameters dominate the uncertainty at different temperature regimes: bite rate from 15-25∘^\circ C; fecundity across all temperatures, but especially ∌\sim25-32∘^\circ C; mortality from 20-30∘^\circ C; parasite development rate at ∌\sim15-16∘^\circC and again at ∌\sim33-35∘^\circC. Focusing empirical studies on these parameters and corresponding temperature ranges would be the most efficient way to improve estimates of R0R_0. While we focus on malaria, our methods apply to improving process-based models more generally, including epidemiological, physiological niche, and species distribution models.Comment: 27 pages, including 1 table and 3 figure
    • 

    corecore