15,640 research outputs found

    Underlying symmetries of realistic interactions and the nuclear many-body problem

    Get PDF
    The present study brings forward important information, within the framework of spectral distribution theory, about the types of forces that dominate three realistic interactions, CD-Bonn, CDBonn+ 3terms and GXPF1, in nuclei and their ability to account for many-particle effects such as the formation of correlated nucleon pairs and enhanced quadrupole collective modes. Like-particle and proton-neutron isovector pairing correlations are described microscopically by a model interaction with Sp(4) dynamical symmetry, which is extended to include an additional quadrupole-quadrupole interaction. The analysis of the results for the 1f7/2 level shows that both CD-Bonn+3terms and GXPF1 exhibit a well-developed pairing character compared to CD-Bonn, while the latter appears to build up more (less) rotational isovector T = 1 (isoscalar T = 0) collective features. Furthermore, the three realistic interactions are in general found to correlate strongly with the pairing+quadrupole model interaction, especially for the highest possible isospin group of states where the model interaction can be used to provide a reasonable description of the corresponding energy spectra.Comment: 12 pages, 4 figure

    Exploring Research through Design in Animal-Computer Interaction

    Get PDF
    This paper explores Research through Design (RtD) as a potential methodology for developing new interactive experiences for animals. We present an example study from an on-going project and examine whether RtD offers an appropriate framework for developing knowledge in the context of Animal-Computer Interaction, as well as considering how best to document such work. We discuss the design journey we undertook to develop interactive systems for captive elephants and the extent to which RtD has enabled us to explore concept development and documentation of research. As a result of our explorations, we propose that particular aspects of RtD can help ACI researchers gain fresh perspectives on the design of technology-enabled devices for non-human animals. We argue that these methods of working can support the investigation of particular and complex situations where no idiomatic interactions yet exist, where collaborative practice is desirable and where the designed objects themselves offer a conceptual window for future research and development

    On the dominance of J(P)=0(+) ground states in even-even nuclei from random two-body interactions

    Get PDF
    Recent calculations using random two-body interactions showed a preponderance of J(P)=0(+) ground states, despite the fact that there is no strong pairing character in the force. We carry out an analysis of a system of identical particles occupying orbits with j=1/2, 3/2 and 5/2 and discuss some general features of the spectra derived from random two-body interactions. We show that for random two-body interactions that are not time-reversal invariant the dominance of 0(+) states in this case is more pronounced, indicating that time-reversal invariance cannot be the origin of the 0(+) dominance.Comment: 8 pages, 3 tables and 3 figures. Phys. Rev. C, in pres

    Ultra-fast mission analysis routine for Apollo Block 2 environmental control system radiators Final report

    Get PDF
    Computer program for rapid mission analysis of Apollo Block 2 environmental control system radiator

    Clustering of equine grass sickness cases in the United Kingdom: a study considering the effect of position-dependent reporting on the space-time K-function

    Get PDF
    Equine grass sickness (EGS) is a largely fatal, pasture-associated dysautonomia. Although the aetiology of this disease is unknown, there is increasing evidence that Clostridium botulinum type C plays an important role in this condition. The disease is widespread in the United Kingdom, with the highest incidence believed to occur in Scotland. EGS also shows strong seasonal variation (most cases are reported between April and July). Data from histologically confirmed cases of EGS from England and Wales in 1999 and 2000 were collected from UK veterinary diagnostic centres. The data did not represent a complete census of cases, and the proportion of all cases reported to the centres would have varied in space and, independently, in time. We consider the variable reporting of this condition and the appropriateness of the space–time K-function when exploring the spatial-temporal properties of a ‘thinned’ point process. We conclude that such position-dependent under-reporting of EGS does not invalidate the Monte Carlo test for space–time interaction, and find strong evidence for space–time clustering of EGS cases (P<0.001). This may be attributed to contagious or other spatially and temporally localized processes such as local climate and/or pasture management practices

    Regularities with random interactions in energy centroids defined by group symmetries

    Full text link
    Regular structures generated by random interactions in energy centroids defined over irreducible representations (irreps) of some of the group symmetries of the interacting boson models sdsdIBM, sdgsdgIBM, sdsdIBM-TT and sdsdIBM-STST are studied by deriving trace propagations equations for the centroids. It is found that, with random interactions, the lowest and highest group irreps in general carry most of the probability for the corresponding centroids to be lowest in energy. This generalizes the result known earlier, via numerical diagonalization, for the more complicated fixed spin (JJ) centroids where simple trace propagation is not possible.Comment: 18 pages, 3 figure

    Clinical, histological and prognostic features of a novel nail-bed lesion of cats: 41 cases

    Get PDF
    There is a distinct subset of lesions arising on the digits of cats, located at or close to the nail-bed epithelium, which are typically composed of proliferative fibroblast-like cells, multinucleate giant cells and areas of osseous metaplasia, but currently there is no published literature detailing the clinical or histological features of these lesions. This study identified 41 such cases from two large commercial diagnostic laboratories and assessed various histological and clinical features; 22 cases had additional follow-up data available

    A procedure to analyze nonlinear density waves in Saturn's rings using several occultation profiles

    Full text link
    Cassini radio science experiments have provided multiple occultation optical depth profiles of Saturn's rings that can be used in combination to analyze density waves. This paper establishes an accurate procedure of inversion of the wave profiles to reconstruct the wave kinematic parameters as a function of semi-major axis, in the nonlinear regime. This procedure is achieved from simulated data in the presence of realistic noise perturbations, to control the reconstruction error. By way of illustration we have applied our procedure to the Mimas 5:3 density wave. We were able to recover precisely the kinematic parameters from the radio experiment occultation data in most of the propagation region; a preliminary analysis of the pressure-corrected dispersion allowed us to determine new but still uncertain values for the opacity (K0.02K\simeq 0.02 cm2^2/g) and velocity dispersion of (co0.6c_o\simeq 0.6 cm/s) in the wave region. Our procedure constitutes the first step in our planned analysis of the density waves of Saturn's rings. It is very accurate and efficient in the far-wave region. However, improvements are required within the first wavelength. The ways in which this method can be used to establish diagnostics of ring physics are outlined.Comment: 50 pages,13 figures, 2 tables. Published in Icarus

    Atomic oxygen studies on polymers

    Get PDF
    The purpose was to study the effects of atomic oxygen on the erosion of polymer based materials. The development of an atomic oxygen neutral beam facility using a SURFATRON surface wave launcher that can produce beam energies between 2 and 3 eV at flux levels as high as approx. 10 to the 17th power atoms/cm (2)-sec is described. Thin film dielectric materials were studied to determine recession rates and and reaction efficiencies as a function of incident beam energy and fluence. Accelerated testing was also accomplished and the values of reaction efficiency compared to available space flight data. Electron microscope photomicrographs of the samples' surface morphology were compared to flight test specimens
    corecore