299 research outputs found

    Irrigation-Yield Production Functions and Irrigation Water Use Effciency Response of Drought-Tolerant and Non-Drought-Tolerant Maize Hybrids under Different Irrigation Levels, Population Densities, and Environments

    Get PDF
    Irrigation-yield production functions (IYPFs), irrigation water use effciency (IWUE), and grain production per unit of applied irrigation of non-drought-tolerant (NDT) and drought-tolerant (DT) maize (Zea mays L.) hybrids were quantified in four locations with different climates in Nebraska [Concord (sub-humid), Clay Center (transition zone between sub-humid and semi-arid); North Platte (semi-arid); and, Scottsbluff (semi-arid)] during three growing seasons (2010, 2011, and 2012) at three irrigation levels (fully-irrigated treatment (FIT), early cut-off (ECOT), and rainfed (RFT)) under two plant population densities (PPDs) (low-PPD; 59,300 plants ha-1; and, high-PPD, 84,000 plants ha-1). Overall, DT hybrids’ performance was superior to NDT hybrid at RFT, ECT, and FIT conditions, as confirmed by the yield response, IYPF and IWUE when all locations, years, and PPDs were averaged. The yield response to water was greater with the high-PPD than the low-PPD in most cases. The magnitude of the highest yields for DT hybrids ranged from 7.3 (low-PPD) to 8.5% (high-PPD) under RFT, 3.7 (low-PPD) to 9.6% (high-PPD) under ECOT, and 3.9% (high-PPD) under FIT higher than NDT hybrid. Relatively, DT hybrids can resist drought-stress conditions longer than NDT hybrid with fewer penalties in yield reduction and maintain comparable or even higher yield production at non-stress-water conditions

    Pulses in the Sand: Impulse Response Analysis of Wireless Underground Channel

    Get PDF
    Wireless underground sensor networks (WUSNs) are becoming ubiquitous in many areas and designing robust systems requires extensive understanding of the underground (UG) channel characteristics. In this paper, UG channel impulse response is modeled and validated via extensive experiments in indoor and field testbed settings. Three distinct types of soils are selected with sand and clay contents ranging from 13% to 86% and 3% to 32%, respectively. Impacts of changes in soil texture and soil moisture are investigated with more than 1,200 measurements in a novel UG testbed that allows flexibility in soil moisture control. Time domain characteristics of channel such as RMS delay spread, coherence bandwidth, and multipath power gain are analyzed. The analysis of the power delay profile validates the three main components of the UG channel: direct, reflected, and lateral waves. It is shown that RMS delay spread follows a log-normal distribution. The coherence bandwidth ranges between 650 kHz and 1.15MHz for soil paths of up to 1m and decreases to 418 kHz for distances above 10m. Soil moisture is shown to affect RMS delay spread non-linearly, which provides opportunities for soil moisture-based dynamic adaptation techniques. The model and analysis paves the way for tailored solutions for data harvesting, UG sub-carrier communication, and UG beamforming

    A Statistical Impulse Response Model Based on Empirical Characterization of Wireless Underground Channel

    Get PDF
    Wireless underground sensor networks (WUSNs) are becoming ubiquitous in many areas. The design of robust systems requires extensive understanding of the underground (UG) channel characteristics. In this paper, an UG channel impulse response is modeled and validated via extensive experiments in indoor and field testbed settings. The three distinct types of soils are selected with sand and clay contents ranging from 13%13\% to 86%86\% and 3%3\% to 32%32\%, respectively. The impacts of changes in soil texture and soil moisture are investigated with more than 1,2001,200 measurements in a novel UG testbed that allows flexibility in soil moisture control. Moreover, the time-domain characteristics of the channel such as the the RMS delay spread, coherence bandwidth, and multipath power gain are analyzed. The analysis of the power delay profile validates the three main components of the UG channel: direct, reflected, and lateral waves. Furthermore, it is shown that the RMS delay spread follows a log-normal distribution. The coherence bandwidth ranges between \SI{650}{kHz} and \SI{1.15}{MHz} for soil paths of up to \SI{1}{m} and decreases to \SI{418}{kHz} for distances above \SI{10}{m}. Soil moisture is shown to affect the RMS delay spread non-linearly, which provides opportunities for soil moisture-based dynamic adaptation techniques. Based on the measurements and the analysis, a statistical channel model for wireless underground channel has been developed. The statistical model shows good agreement with the measurement data. The model and analysis paves the way for tailored solutions for data harvesting, UG sub-carrier communication, and UG beamforming

    Pulses in the Sand: Impulse Response Analysis of Wireless Underground Channel

    Get PDF
    Wireless underground sensor networks (WUSNs) are becoming ubiquitous in many areas and designing robust systems requires extensive understanding of the underground (UG) channel characteristics. In this paper, UG channel impulse response is modeled and validated via extensive experiments in indoor and field testbed settings. Three distinct types of soils are selected with sand and clay contents ranging from 13% to 86% and 3% to 32%, respectively. Impacts of changes in soil texture and soil moisture are investigated with more than 1,200 measurements in a novel UG testbed that allows flexibility in soil moisture control. Time domain characteristics of channel such as RMS delay spread, coherence bandwidth, and multipath power gain are analyzed. The analysis of the power delay profile validates the three main components of the UG channel: direct, reflected, and lateral waves. It is shown that RMS delay spread follows a log-normal distribution. The coherence bandwidth ranges between 650 kHz and 1.15MHz for soil paths of up to 1m and decreases to 418 kHz for distances above 10m. Soil moisture is shown to affect RMS delay spread non-linearly, which provides opportunities for soil moisture-based dynamic adaptation techniques. The model and analysis paves the way for tailored solutions for data harvesting, UG sub-carrier communication, and UG beamforming

    Internet of Underground Things: Sensing and Communications on the Field for Precision Agriculture

    Get PDF
    The projected increases in World population and need for food have recently motivated adoption of information technology solutions in crop fields within precision agriculture approaches. Internet of underground things (IOUT), which consists of sensors and communication devices, partly or completely buried underground for real-time soil sensing and monitoring, emerge from this need. This new paradigm facilitates seamless integration of underground sensors, machinery, and irrigation systems with the complex social network of growers, agronomists, crop consultants, and advisors. In this paper, state-of-the-art communication architectures are reviewed, and underlying sensing technology and communication mechanisms for IOUT are presented. Recent advances in the theory and applications of wireless underground communication are also reported. Major challenges in IOUT design and implementation are identified

    Connecting Soil to the Cloud: A Wireless Underground Sensor Network Testbed

    Get PDF
    In this demo, a novel underground communication system and an online underground sensor network testbed is demonstrated. The underground communication system, developed in the Cyber-physical Networking (CPN) Laboratory at the University of Nebraska-Lincoln, includes an underground antenna that is tailored to mitigate the adverse effects of soil on underground communication. An online connection is established with the CPN underground sensor network testbed that is located at Clay Center, Nebraska. The underground sensor network testbed consists of a network of underground communication systems equipped with soil moisture sensors and a mobile data harvesting unit equipped with cellular communication capabilities. Real-time soil moisture data delivery from Nebraska to Korea is demonstrated

    Internet of underground things in precision agriculture: Architecture and technology aspects

    Get PDF
    The projected increases in World population and need for food have recently motivated adoption of information technology solutions in crop fields within precision agriculture approaches. Internet Of Underground Things (IOUT), which consists of sensors and communication devices, partly or completely buried underground for real-time soil sensing and monitoring, emerge from this need. This new paradigm facilitates seamless integration of underground sensors, machinery, and irrigation systems with the complex social network of growers, agronomists, crop consultants, and advisors. In this paper, state-of-the-art communication architectures are reviewed, and underlying sensing technology and communication mechanisms for IOUT are presented. Moreover, recent advances in the theory and applications of wireless underground communication are also reported. Finally, major challenges in IOUT design and implementation are identified

    Connecting Soil to the Cloud: A Wireless Underground Sensor Network Testbed

    Get PDF
    In this demo, a novel underground communication system and an online underground sensor network testbed is demonstrated. The underground communication system, developed in the Cyber-physical Networking (CPN) Laboratory at the University of Nebraska-Lincoln, includes an underground antenna that is tailored to mitigate the adverse effects of soil on underground communication. An online connection is established with the CPN underground sensor network testbed that is located at Clay Center, Nebraska. The underground sensor network testbed consists of a network of underground communication systems equipped with soil moisture sensors and a mobile data harvesting unit equipped with cellular communication capabilities. Real-time soil moisture data delivery from Nebraska to Korea is demonstrated

    A Theoretical Model of Underground Dipole Antennas for Communications in Internet of Underground Things

    Get PDF
    The realization of Internet of Underground Things (IOUT) relies on the establishment of reliable communication links, where the antenna becomes a major design component due to the significant impacts of soil. In this paper, a theoretical model is developed to capture the impacts of change of soil moisture on the return loss, resonant frequency, and bandwidth of a buried dipole antenna. Experiments are conducted in silty clay loam, sandy, and silt loam soil, to characterize the effects of soil, in an indoor testbed and field testbeds. It is shown that at subsurface burial depths (0.1-0.4m), change in soil moisture impacts communication by resulting in a shift in the resonant frequency of the antenna. Simulations are done to validate the theoretical and measured results. This model allows system engineers to predict the underground antenna resonance, and also helps to design an efficient communication system in IOUT. Accordingly, a wideband planar antenna is designed for an agricultural IOUT application. Empirical evaluations show that an antenna designed considering both the dispersion of soil and the reflection from the soil-air interface can improve communication distances by up to five times compared to antennas that are designed based on only the wavelength change in soil
    • …
    corecore