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A Statistical Impulse Response Model Based

on Empirical Characterization of Wireless

Underground Channel

Abdul Salam, Member, IEEE, Mehmet C. Vuran, Member, IEEE,

and Suat Irmak

Abstract

Wireless underground sensor networks (WUSNs) are becoming ubiquitous in many areas. The design

of robust systems requires extensive understanding of the underground (UG) channel characteristics. In

this paper, an UG channel impulse response is modeled and validated via extensive experiments in

indoor and field testbed settings. The three distinct types of soils are selected with sand and clay

contents ranging from 13% to 86% and 3% to 32%, respectively. The impacts of changes in soil texture

and soil moisture are investigated with more than 1, 200 measurements in a novel UG testbed that allows

flexibility in soil moisture control. Moreover, the time-domain characteristics of the channel such as the

the RMS delay spread, coherence bandwidth, and multipath power gain are analyzed. The analysis of

the power delay profile validates the three main components of the UG channel: direct, reflected, and

lateral waves. Furthermore, it is shown that the RMS delay spread follows a log-normal distribution. The

coherence bandwidth ranges between 650 kHz and 1.15MHz for soil paths of up to 1m and decreases
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to 418 kHz for distances above 10m. Soil moisture is shown to affect the RMS delay spread non-

linearly, which provides opportunities for soil moisture-based dynamic adaptation techniques. Based on

the measurements and the analysis, a statistical channel model for wireless underground channel has

been developed. The statistical model shows good agreement with the measurement data. The model

and analysis paves the way for tailored solutions for data harvesting, UG sub-carrier communication,

and UG beamforming.

Index Terms

Cyber-physical systems, Underground electromagnetic propagation, Wireless underground sensor

networks, Precision agriculture.

I. INTRODUCTION

W IRELESS underground sensor networks (WUSNs) are becoming ubiquitous in many

areas including precision agriculture [1], [2], [12], [29], [42], [48], [56], [57], [58], [60],

[74], environment and infrastructure monitoring [14], [20], [68], [71], [3], and border patrol [5].

The establishment of robust wireless underground communication links between two underground

nodes (UG2UG links) or an underground node and a node above the surface (UG2AG links)

requires extensive knowledge of the underground (UG) channel characteristics.

In general, the performance of a communication system is seriously degraded by multipath

fading [15]. Moreover, the communication in UG channel is affected by multipath fading caused

by reflection of electromagnetic (EM) waves in soil and from soil-air interface. Tp reduce the

effects of these disturbances, a detailed characterization of the UG channel is required. Traditional

over-the-air (OTA) communication channel models cannot be readily used in WUSNs because

EM waves in soil suffer higher attenuation than in air due to their incidence in lossy media

which consists of soil, water and air, and accordingly, leads to permittivity variations over time

and space with changes in soil moisture [12]. The WUSNs are generally deployed at depths

which are less than 50 cm [8]. Due to proximity to the Earth surface, a part of the transmitted

EM waves propagate from soil to air, then travel along the soil-air interface, and enter the soil

again to reach the receiver. These EM waves (lateral waves [18]) are a major component of the

UG channel.

The analysis of EM wave propagation in underground channel is challenging because of its

computation complexity [5]. In [11] and [73], channel models based on the analysis of the EM

field and Friis equations have been developed and direct, reflected, and lateral waves are shown
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to be major contributors of received signal strength. These models provide good approximations

when coarse channel measures (e.g., path loss) are concerned but are limited due to the lack

of insight into channel statistics (e.g., delay spread, and coherence bandwidth) and empirical

validations.

Partly unique to the UG channel, there are mainly four types of physical mechanisms that lead

to variations in the UG channel statistics, the analyses of which constitute the major contributions

of this paper.

1) Soil Texture and Bulk Density Variations: EM waves exhibit attenuation when incident in

soil medium. These variations vary with texture and bulk density of soil. For example, sandy

soil holds less bound water, which is the major component in soil that absorbs EM waves. The

water holding capacity of medium textured soils (silt loam, fine sandy loam, and silty clay loam)

is much higher, because of the small pore size, as compared to coarse soils (sand, sandy loam,

loamy sand). Medium textured soils have lower pore size and hence, no aggregation and little

resistance against gravity [13]. To cover a wide array of soil texture and bulk density variations,

we have performed experiments in three distinct types of soils.

2) Soil Moisture Variations: The effective permittivity of soil is a complex number, thus,

besides diffusion attenuation, the EM waves also suffer from an additional attenuation caused

by the absorption of soil water content. To this end, experiments are conducted with controlled

soil moisture variations in an indoor testbed.

3) Distance and Depth Variations: Received signal strength varies with depth of and distance

between transmitter and receiver antennas because different components of EM waves suffer

attenuation based on their travel paths. Sensors in WUSN applications are usually buried in

topsoil and subsoil layers. The topsoil layer (root growth region) consists of top 1 feet of soil and

2−4 feet layer below the topsoil is subsoil. Therefore, we have taken measurements for depths of

10−40 cm with transmitter receiver (T-R) distances of 50 cm to 12 m for UG2UG experiments.

Near-field effects of underground antenna for frequency range used in these experiments are

within the 30 cm region. In addition, UG2AG experiments are conducted for radii of 2−7 m

with receiver angles of 0°-90° taken in the vertical plane as normal to soil-air interface.

4) Frequency Variations: The path loss caused by the attenuation is frequency dependent

[10]. In addition, when EM waves propagate in soil, their wavelength shortens due to higher

permittivity of soil than the air. Channel capacity in soil is also a function of operation frequency.

Channel transfer function measurements (S21) are taken to analyze the effects of frequency on
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underground communication [63], [28], [65], [59], [61], [75], [74], [19], [55], [57], [31], [54],

[56], [39], [32], [34], [37], [52], [38], [70], [36], [33], [42], [51], [35], [43], [40], [48], [47],

[44], [49], [45], [46], [50], [41], [25], [26], [53], [24], [27].

Given the effects of these factors, the optimization of digital communications in wireless

underground channel merits a detailed characterization of effects of these physical phenomena of

soil on propagation between wireless underground channel transmitter and receiver. This requires

extensive measurements to derive the model channel parameters such as the RMS delay spread,

channel gains, and coherence bandwidth, through empirical measurements. These parameters

are useful for performance evaluation of a digital communication system operating in wireless

underground channel. Therefore, it is important to have a realistic underground channel model.

A statistical model developed from empirical observations should not only be able to capture the

effects of all the physical processes undergoing in soil but also should exhibit a close match with

the measurement data. In this paper, we present an UG channel impulse response model and the

corresponding analysis based on measured data collected from UG channel experiments with

a 250 ps delay resolution. Statistical properties of multipath profiles measured in different soil

types under different soil moisture levels are investigated. The results presented here describe

Root mean square (RMS) delay spread, distribution of the RMS delay spread, mean amplitude

across all profiles for a fixed T-R displacement, effects of soil moisture on peak amplitudes

of power delay profiles, mean access delay, and coherence bandwidth statistics. The goal of

the measurement campaign and the corresponding model is to produce a reliable channel model

which can be used for different types of soils under different conditions. Thus, we have considered

several possible scenarios with more than 1, 500 measurements taken over a period of 10 months.

The rest of the paper is organized as follows: The related work is discussed in Section III.

A description of UG channel impulse response model is given in Section IV. In Section V,

measurement sites and procedures are described. The results and analysis of measured impulse

responses are presented in Section VI. The wireless underground channel statistical model is

presented in Section VII. Finally, the paper is concluded in Section IX.

II. BACKGROUND

Electromagnetic (EM) wave communication in the underground channel consists of three

types of links [8], namely underground to aboveground (UG2AG), aboveground to underground

(AG2UG), and underground to underground (UG2UG). The soil medium is involved in com-
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munication through these three links. Wavelength of an EM wave incident into soil is affected

by dielectric properties of the soil. Soil texture and its water holding capacity, bulk density, and

salinity affects the propagation of waves. To understand the propagation of waves in soil, it is

important to understand the physical processes in soil. Soil medium consists of soil particles,

pore space, and water content. Soil particles are divided into silt, sand and clay based on their

size. Soils are classified based on the distribution of these particle sizes. The complex dielectric

constant of soil consists of ε′s and ε′′s . The dielectric constant of a soil that is fully dried is not

dependent on frequency can be determined from [72]

ε′s = [1 + 0.44ρb]
2, (1)

where ρb is the bulk density of soil. The bulk density is defined as the ratio of the dry soil

mass to bulk soil volume including pore space. The dielectric spectra of the soil becomes more

complicated with the increase in moisture content. Water content inside the soil is divided into

two: bound and free water. Bound water refers to water held by soil particles in the top layers

of soil, and depends on particles surface area which is defined by the soil composition. Water

content in the soil can be ascertained by either volumetric or gravimetric bases.

Electromagnetic waves traveling in the soil interact with soil particles, air, free and bound

water. The free and bound water molecules, when in interaction electromagnetic waves, exhibit

different dielectric dispersion characteristics. Thus, the dielectric constant depends on the fre-

quency of EM waves. While it is called "constant", the dielectric is actually not a constant value

in the soil and it changes with several factors, including soil water content. However, in general,

the increase in dielectric constant of the soil with water content does not differ greatly with

soil type (particle size distribution) particularly in the high-frequency applications. That is why,

the dielectric constant is an effective indicator of soil water content in different soil types. In

addition to the water content and frequency, other factors such as bulk density and soil texture

also effect the permittivity of soil.

In [10], a model of dielectric properties of soil has been proposed for frequencies higher than

1.4 MHz. In [21], Peplinski et.al. has modified the model through extensive measurements to

characterize the dielectric behavior of the soil in the frequency range of 300 MHz to 1.3 GHz.

It is given as

εs = ε′s − iε′′s , (2)
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Fig. 1: The three EM waves in an underground channel [11].

where εs is the relative complex dielectric constant of the soil-water mixture, and it depends on

the soil texture, volumetric water content, bulk density, frequency, and particle density.

III. RELATED WORK

Wireless communication in WUSNs is an emerging field and few models exist to represent

the underground communication. In [73], we have developed a 2-wave model but lateral wave

is not considered. In [7], models have been developed but these do not consider underground

communication. A model for underground communication in mines and road tunnels has been

developed in [68] but it cannot be applied to WUSN due to wave propagation differences between

tunnels and soil. We have also developed a closed-form path loss model using lateral waves

in [11] but channel impulse response and statistics cannot be captured through this simplified

model.

Wireless underground communication shares characteristics of underwater communication [6].

However, underwater communication based on electromagnetic waves is not feasible because

of high attenuation. Therefore, the alternative techniques including acoustic [6] are used in

underwater communications. Acoustic technique cannot be used in UG channel due to vibration

limitation. In magnetic induction (MI), [20], [69], the signal strength decays with inverse cube

factor and high data rates are not possible. Moreover, communication cannot take place if sender

receiver coils are perpendicular to each other. Therefore, the MI cannot be readily implemented

in WUSNs.

To the best of our knowledge, this is the first measurement campaign conducted to analyze

and measure the channel impulse response of UG channel and the first work that proposes

guidelines for the development of a novel WUSN testbed to improve the accuracy, to reduce the

time required to conduct WUSN experiments, and to allow flexibility in soil moisture control.
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(a) (b) (c) (d) (e)

Fig. 2: Testbed Development: (a) Testbed box, (c) Packed soil, (b) Layer of gravel at the bottom of the testbed, (d) Antenna

placement, (e) Final outlook.

IV. IMPULSE RESPONSE OF UG CHANNEL

A wireless channel can be completely characterized by its impulse response. Traditionally, a

wireless channel is modeled as a linear filter with a complex valued low pass equivalent impulse

response which can be expressed as [17]

h(t) =
L−1∑
l=0

αlδ(t− τl) , (3)

where L is the number of multipaths, αl are the complex gains, and τl the delays associated

with multipaths.

A schematic view of UG channel is shown in Fig. 1, where a transmitter and a receiver are

located at a distance of d and depths of Bt and Br, respectively [11]. Communication is mainly

conducted through three EM waves. First, the direct wave which travels through the soil in

line-of-sight from transmitter to receiver. Second, the reflected wave, that also travels through

the soil, is reflected from the air-soil interface. Third, the lateral wave propagates out of soil,

travels along the surface and enters the soil to reach the receiver.

Based on this analysis, the UG channel process can be expressed as a sum of direct, reflected

and lateral waves. Hence (3) is rewritten for UG channel as

hug(t) =
L−1∑
i=0

αl,iδ(t− τl,i) +
D−1∑
i=0

αd,iδ(t− τd,i) +
R−1∑
i=0

αr,iδ(t− τr,i) , (4)

where L, D, and R are number of multipaths; αl,i, αd,i, and αr,i are the complex gains of a

particular wave type with index i; and τl,i, τd,i, and τr,i are delays associated with lateral wave,

direct wave, and reflected wave with index i, respectively.
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The received power is the area under the profile and is calculated as the sum of powers in all

three components in the profile. Accordingly, the received power is given as

Pr =
L−1∑
i=0

|αl,i|2 +
D−1∑
i=0

|αd,i|2 +
R−1∑
i=0

|αr,i|2 . (5)

The path loss is calculated from the difference of the known transmit power and Pr, and is

given as

PL(dBm) = Pt(dBm) +Gt(dBi) +Gr(dBi)− Pr(dBm) , (6)

where Pt is transmit power, Pr is received power, and Gt and Gr are transmitter and receiver

antenna gains, respectively. The antenna effects are included, intrinsically, in the impulse response

hug(t) obtained from the channel transfer function. Traditionally, impulse response of wireless

indoor channel is also dependent on antenna properties as power radiated and received in a

particular direction is defined by directive gains of transmitter and receiver antennas [23]. In

our experiments and analysis, we use omni-directional dipole antennas to observe multipath

components in all directions.

Next, we review the metrics derived from the channel impulse response, including excess delay

and delay spread. Excess delay is the time delay between the first and last arriving components.

Last component is defined by a threshold value in dB relative to the strongest component in the

power delay profile (PDP). Typically, a threshold value of -30 dB is used [15],[23]. Mean excess

delay (τ ) is defined as the first moment of power delay profile and is given as [23]

τ =
∑
k

Pkτk

/ ∑
k

Pk , (7)

where Pk is the absolute instantaneous power at the kth bin, and τk is the delay of the kth bin.

Root mean square (RMS) delay spread is the square root of the second central moment of the

power delay profile and is given as [23]:

τrms =

√
τ 2 − (τ)2 , (8)

where τ 2 =
∑
k

Pkτ
2
k/

∑
k

P 2
k , Pk is the absolute instantaneous power at kth bin, and τk is the delay

of the kth bin. The RMS delay spread is a good indicator of multipath spread and it indicates

the potential of inter-symbol interference (ISI).
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Fig. 3: (a) Soil moisture (expressed as soil matric potential; greater matric potential values indicate lower soil moisture and zero

matric potential represents near saturation condition) with time in silt loam testbed, (b) Outdoor testbed in a field setting, (c)

Experiment layout.

TABLE I: Particle Size Distribution and Classification of Testbed Soils.

Textural Class %Sand %Silt %Clay

Sandy Soil 86 11 3

Silt Loam 33 51 16

Silty Clay Loam 13 55 32

V. MEASUREMENT SITES AND PROCEDURES

Measurements are conducted in an indoor testbed (Section V-A) and field settings (Sec-

tion V-B). The measurement procedures are explained in Section V-C.

A. Indoor Testbed

Conducting WUSN experiments in outdoor settings is a challenging task. These challenges

include lack of availability of wide range of soil moisture levels over a short period of time,

difficulty of dynamic control over soil moisture, changing soil types, and installation/replacement

of equipment. Furthermore, extreme temperature affects make it hard to conduct experiments.

To overcome these challenges faced in outdoor environments, an indoor testbed is developed

in a greenhouse setting. It is a 100 ”x36 ”x48 ” wooden box (Fig. 2(a)) assembled with wooden

planks and contains 90 ft3 of packed soil. A drainage system is installed in the bottom, and

sides of the box are covered with water proof tarp to stop water seepage from sides. Before

installation of antennas and sensors, 3 ” layer of gravel is laid in the bottom of the box for free

drainage of water (Fig. 2(b)) and then soil is placed in the box (Fig. 2(c)). Two pvc drainage

outlets installed at the bottom of the testbed allowed freely-drained (due to gravitational force
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only) water to exit the system. The soil profile was wetted uniformly in the entire testbed using

drip lateral with drip emitters installed every 25 cm to ensure uniform wetting of the soil profile.

To monitor the soil moisture level, 8 Watermark sensors are installed on each side of the box

at 10 cm, 20 cm, 30 cm and 40 cm depths. Although in agricultural operations, environmental

monitoring and security applications, the soil moisture sensors can be installed at different

depths, depending on several variables, most common maximum installation/application depth

is about 3 feet from the soil surface. Depending on the purpose of the soil moisture data use, in

many applications such as in shallow-rooted cropping systems, sandy soils and numerous other

applications, monitoring soil moisture in the upper soil layer (i.e., 0−40 cm) is sufficient.

These sensors are connected to two Watermark dataloggers. Soil is packed after every 30 cm

by using a tamper tool to achieve the bulk density to mimic real-world field conditions. This

process is repeated for antenna installation at each depth. Three sets of four dipole antennas are

installed (Fig. 2(d)) at the depths of 10 cm, 20 cm, 30 cm, and 40 cm. These sets are 50 cm apart

from each other. The final outlook of the testbed is shown in Fig. 2(e).

We have conducted experiments for two different types of soils in the indoor testbed: silt loam

and sandy soil. Particle size distribution and classification of testbed soils is given in Table I. To

investigate the effects of soil texture on underground communication, soils selected for use in

the testbed have sand contents ranging from 13 % to 86 % and clay contents ranging from 3 %

to 32 %. Before starting the experiments, soil is nearly saturated to attain the highest possible

level of volumetric water content (VWC) and then measurements are collected as the water

content first reaches to field capacity1 and then subsequently to wilting point2. The changes in

soil moisture level with time are shown in Fig. 3(a) for silt loam soil.

B. Field Site

To compare with the results of indoor testbed experiments and conduct underground-to-

aboveground experiments, a testbed of dipole antennas has been prepared in an outdoor field

with silty clay loam soil (Fig. 3(b)). Dipole antennas are buried in soil at a burial depth of 20 cm

with distances from the first antenna as 50 cm-12 m. A pole with adjustable height is used to

1The amount of soil-water held by soil particles after excess water is freely drained, which takes about 2−3 days.
2The water content level at which water is no more available to plants.
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Fig. 4: (a) Distribution of mean excess delay τ in indoor testbed (silt loam) experiment, (b) Excess delay with distance at 20 cm

depth in field (silty clay loam) experiment.

conduct underground-to-aboveground (UG2AG) experiments with radii of 2 m, 4 m, 5.5 m and

7 m3 with receiver angles of 0°, 30°, 45°, 60°, and 90°.

C. Measurement Procedure

Accurate measurement of channel impulse response can be obtained from frequency domain

measurements due to Fourier transform relationship between transfer function and channel

impulse response [16]. Accordingly, we have obtained channel impulse by taking frequency

domain measurements and then taking inverse Fourier transform. A diagram of the measurement

layout is shown in Fig. 3(c). Frequency response of the channel is measured using a Vector

Network Analyzer (VNA). VNA-based channel measurements are popular for measuring channel

transfer functions in wireless communications and antenna domains [9], [15], [16], [23], [66],

[67]. The measurement parameters are given in Table II. The VNA generates a linearly swept

frequency signal [22] which is propagated over a frequency range of 10 MHz to 4 GHz. In this

3The maximum distance of 7 m is due to the limitations of the antenna cable length for VNA.

TABLE II: Underground channel measurement parameters

Parameter Value

Start Frequency 10 MHz

Stop Frequency 4 GHz

Number of Frequency Points 401

Transmit Power 5 dBm

Vector Network Analyzer Agilent FieldFox
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A distribution of coherence bandwidth for 50 cm and 1 m distance in indoor testbed (silt loam) experiment, (d) The coherence

bandwidth with distance in field (silty clay loam) experiment.
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Fig. 6: The dielectric constant of siltloam and sandy soil at 200 MHz and 600 MHz frequency.

range, VNA records 401 complex tones and stores them on external storage for post-processing.

The discretized complex channel frequency response Hn is given by [67]:

Hn = H(fstart + nfinc) , (9)

where fstart and finc are the start and increment frequencies of the sweep, respectively. The n is

number of evenly spaced data points across the frequency range. Hn is obtained by measuring the

reference (R) and input (A) channels and taking the complex ratio, such that Hn = An/Rn. This

process is repeated over the frequency range Fsweep at n discrete points, such that finc = Fsweep/n.

To obtain channel impulse response, the complex frequency data is inverse Fourier transformed.

The resulting N point complex channel impulse response has a delay bin spacing of 1/Fsweep and

an unambiguous FFT range of N/Fsweep. The measured Hn are windowed using a minimum three

term Blackman-Harris window [67] because of its excellent side lobe suppression and relatively

wide main lobe width. Before time domain conversion, the windowing of Hn is required to avoid

sinc2 side lobes associated with rectangular nature of frequency sweep [67].

In Figs. 6, the dielectric constant in silt loam and sandy soil is shown at different frequency and
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TABLE III: Mean (µ) and Standard Deviation (σ) in nanoseconds for the mean excess delay and the RMS delay spread in

indoor testbed (silt loam) experiment.

Depth

Mean Excess Delay

τ

RMS Delay Spread

τrms

50 cm 1 m 50 cm 1 m

µ σ µ σ µ σ µ σ

10 cm 33.53 1.24 36.09 0.80 20.05 2.24 21.94 2.32

20 cm 34.66 1.07 37.12 1.00 24.93 1.64 25.10 1.77

30 cm 35.87 0.72 37.55 0.65 24.84 2.17 25.34 3.41

40 cm 36.43 0.74 40.18 0.94 23.91 2.84 25.62 1.87

water content values. It can be observed that ε′s increases linearly when volumetric water content

of the soil is increased. It can be observed that the imaginary part in Fig. 6(c) does not increase

monotonically with volumetric water content. The dielectric constant of the soil depends on the

many factors such as soil texture, volumetric water content, bulk density, frequency and particle

density. At low frequency, 200 MHz in the sandy soil, the permittivity is not accurately predicted

with Peplinski model, because the model does not work with sandy soil at lower frequencies

with high sand content [21].

VI. ANALYSIS AND RESULTS

A. Characterization of UG Channel Impulse Response

The excess delay, mean access delay (7), the RMS delay spread (8) [66], [23], [9], and

coherence bandwidth in relation to the RMS delay spread [16] are the parameters used to

characterize the channel. For channel characterization, these parameters are used because system

performance is not effected by the actual shape of PDP [66]. In the following, we discuss these

metrics and the effects of soil moisture, soil types, distance, and depth on these metrics.

1) Statistics of Mean Excess Delay: Distribution of mean excess delay for 50 cm and 1 m

distance over all four depths in indoor testbed (silt loam) experiment is given in Fig. 4(a). Higher

mean excess delay can be observed with the increase in T-R separation, which corresponds to

an increase of 2−3 ns (8 %). In Table III, statistics for mean (µ) and standard deviation (σ) for

the mean excess delay for 50 cm and 1 m distances, and the 4 depths are shown. Higher mean

excess delays are also observed as transmitter and receiver are buried deeper. In Fig. 4(b), excess

delay is shown as a function of distance at 20 cm depth in field (silty clay loam) experiment. It

can be observed that excess delay is increased from 40 ns up to 116 ns as UG communication

distance increases from 50 cm to 12 m.
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Fig. 7: Indoor testbed (silt loam) experiment: (a) Power delay profile, (b) Path loss with vs. soil moisture at 10 cm depth, (c)

The RMS delay spread vs. soil moisture at 50 cm distance, (d) Mean amplitudes of all 50 cm and 1 m profiles across all depths.

2) Analysis of RMS Delay Spread: Distribution of the RMS delay spreads for T-R separations

of 50 cm and 1 m in indoor testbed (silt loam) experiment, are shown in Fig. 5(a) with statistical

fits. Our analysis shows that empirical distribution of τrms follows a log-normal distribution and

the mean values of 23.94 ns and 24.05 ns and standard deviations of 3.7 ns and 3.4 ns for 50 cm

and 1 m distance, respectively. In Table III, the statistics for mean (µ) and standard deviation

(σ) of the RMS delay spread for 50 m and 1 m distances, and 4 depths are shown. It can be

observed from Fig. 5(a) and Table III that the RMS delay spread (τrms) is dependent on T-R

separation and burial depth with positive correlation. There is an increase of 2-3 ns (20 %) in

the RMS delay spread as depth is increased from 10 cm to 40 cm. A 4 ns increase in the RMS

delay spread can be observed from 10 cm to 20 cm depth at 50 cm distance, which is caused by

lateral wave, because at 20 cm lateral wave reaches the receiver after direct wave. At 40 cm, the

RMS delay spread decreases to 23 ns because lateral wave attenuates more as the burial depth

increases. In Fig. 5(b), the RMS delay spread is shown as a function of T-R distance at 20 cm

depth in field (silty clay loam) experiment. It can be observed that the RMS delay spread is

increased to 48 ns by increasing distance to 12 m.

The increase in the RMS delay spread with depth and distance is contributed by the strong

multipaths associated with the lateral and reflected components, since their propagation time

differences increase with distance. This increase in the RMS delay spread is an important result as

it limits the system performance in terms of coherence bandwidth. It has been shown by analysis

and simulations that maximum data rate that can be achieved without diversity or equalization is

a few percent of the inverse of the RMS delay spread [16]. Using this relationship, a coherence

bandwidth is established for the RMS delay spread. For our analysis, we have used 90 % signal

correlation ( 1
50
τrms) as an approximation of coherence bandwidth, because underground channel

experiences higher attenuation in soil as compared to terrestrial WSNs, where typically 50 %

and 70 % signal correlation values are used to approximate coherence bandwidth.
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In Fig. 5(c), the distribution of coherence bandwidth for 50 cm and 1 m distance over all depths

in indoor testbed (silt loam) experiment is shown. It is observed that the range of coherence

bandwidth for UG channel is between 650 kHz to 1.15 MHz for distances up to 1 m. In Fig. 5(d),

coherence bandwidth as a function of distance in field (silty clay loam) experiment is shown. It

can be observed that the coherence bandwidth decreases to 418 kHz (63 %) as communication

distance is increased to 12 m. The restriction placed on the coherence bandwidth by the increase

in the RMS delay spread with distance and depth should definitely be considered in system

design but a fine design line should not be drawn because of the soil moisture variations, which

are discussed next.

3) Soil Moisture Variations: In Fig. 7(a), the effect of soil moisture on amplitudes of a delay

profiles is shown for 50 cm distance in indoor testbed (silt loam) experiment. Lower amplitudes

can be observed for higher soil moisture (lower soil matric potential (cbar)) and this increase

is consistent over all delay ranges. The amplitude decrease varies between 5−8 dB across the

entire PDP.

Water in soil is classified into bound water and free water. Water contained in the first few

particle layers of the soil is called bound water, which is strongly held by soil particles due to the

effect of osmotic and matric forces [13]. Below these layers, effects of osmotic and matric forces

is reduced, which results in unrestricted water movement. However, the presence of salinity can

change the impact of osmotic potential (force) on soil-water movement dynamics substantially.

EM waves experience dispersion when interfaced with bound water. Since permittivity of soil

varies with time due to the variation in soil moisture, wavelength in soil changes which effects

the attenuation that waves experience in soil.

In Fig. 7(b), the path loss with change in soil moisture (expressed as soil matric potential4)

at 50 cm and 1 m distance and 10 cm depth in indoor testbed (silt loam) experiment is shown.

The path loss decreases by 3−4 dB (7 %) as soil matric potential changes from 0 to 50 cbar

(Centibars). In Fig. 7(c), change in the RMS delay spread with change in soil moisture at 50 cm

distance, 10 cm and 20 cm depth in indoor testbed (silt loam) experiment is shown. From near-

saturation to 8 cbar, the RMS delay spread has decreased first and then increases as soil moisture

decreases. This is attributed to water repellency of soil particles where infiltration is slowed

momentarily at near-saturation levels. For 10 cm depth, the RMS delay spread has increased

4Greater matric potential values indicate lower soil moisture and zero matric potential represents near saturation condition.
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Fig. 8: Indoor testbed (silt loam) experiment: (a) Distribution function of mean amplitudes at 40 cm depth. Field (silty clay

loam) experiment: (b) Attenuation with frequency.

from 19 ns to 25 ns (31 %) as soil moisture decreases. Similar increase in the RMS delay spread

with decrease in soil moisture can be observed for 20 cm depth. The low water absorption of

EM waves with decrease in soil moisture contributes to increase in τrms as multipath components

exhibit less attenuation.

The variations in amplitudes and path loss with the change in soil moisture lead to changes in

coherence bandwidth, optimal system capacity and communication coverage range. Specifically,

increase in the RMS delay spread with soil moisture decreases coherence bandwidth of the chan-

nel, and attenuation is also increased when soil moisture increases. Therefore, the underground

communication devices should have the ability to adjust their operation frequency, modulation

scheme, and transmit power to compensate these changes caused by soil moisture variation.

The cognitive radio [4] solutions can be used to adopt parameters based on changing channel

conditions.

4) Soil Type: Soils are divided into textural classes based on their particle size. To analyze

the effects of soil texture, we have measured the channel statistics for silty clay loam, silt loam,

and sandy soils. In Table IV, statistics of mean (µ) and standard deviation (σ) for the mean

excess delay, the RMS delay spread and path loss for 50 cm and 1 m distances, and 4 depths

TABLE IV: Mean (µ) and Standard Deviation (σ) for the Mean Excess Delay, the RMS delay spread and Path Loss for 50 cm

and 1 m distances, and 20 cm depth for three soils. Values are in nanoseconds.

Soil Type

Mean Excess Delay RMS Delay Spread Path Loss

Distance Distance Distance

50 cm 1 m 50 cm 1 m 50 cm 1 m

µ σ µ σ µ σ µ σ

Silty Clay Loam 34.77 2.44 38.05 0.74 25.67 3.49 26.89 2.98 49 dB 52 dB

Silt Loam 34.66 1.07 37.12 1.00 24.93 1.64 25.10 1.77 48 dB 51 dB

Sandy Soil 34.13 1.90 37.87 0.80 27.89 2.76 29.54 1.66 40 dB 44 dB
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Fig. 9: The attenuation with distance at different receiver angles (UG2AG) : (a) 0°, (b) 90°, (c) The RMS delay spread with

distance, (d) The coherence bandwidth with distance.

are shown.

the RMS delay spread τrms in sandy soil is 2 ns higher than silty clay loam, which is 1 ns

higher than the silt loam on the average. Similarly, path loss is 4−5 dB lower in sandy soil as

compared to silt loam and silty clay loam. This is due to the lower attenuation in sandy soil.

Attenuation of EM waves in soil varies with soil type [10]. Sandy soil holds less bound water,

which is the major component in soil that absorbs EM waves. Water holding capacity of fine-

textured (silt-loam, silty clay loam) and medium-textured soils (fine sandy loam) is much higher,

because of the small pore size (but, greater number of pores), as compared to coarse-textured

(sandy, sandy loam, loamy sand) because of larger pore size (but less in number of pores) [13].

Hence the soils containing the highest clay contents suffer more attenuation.

In sandy soil, there is a trade-off between attenuation and the RMS delay spread. The RMS

delay spread τrms is large due to least attenuated multipath components arriving at the receiver

with large delays. On the other hand, overall attenuation is low as compared to silt loam and

silty clay loam. Therefore, the higher SNR can be achieved with moderate coherence bandwidth.

Effects of soil texture must be taken into account during design and deployment of WUSNs and

optimal system parameters such as communication range and data rates should be selected based

on the physical characteristics of the soil.

TABLE V: Speed of the wave in all three soils, calculated by refractive indices n based on particle size distribution of soils

given in Table II.

Soil Type
Speed in the Soil

m/s
% of C

Refractive Index

n

Silt Loam 5.66x107 18.89 5.28

Sandy Soil 5.01x107 16.71 5.98

Silty Clay Loam 5.67x107 18.91 5.29
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5) Distance and Depth: The communication in UG channel is effected by depth and T-R

separation. However, these impacts are much more severe then over the air communication.

In Fig. 7(d), effects of T-R distance are shown in indoor testbed (silt loam) experiment. By

increasing the distance from 50 cm to 1 m, the first component in the 1 m PDP is delayed by

10 ns. An 8 dB difference in peak amplitude is observed between profiles at 50 cm and 1 m.

Distribution of mean amplitudes of 50 cm and 1 m profiles at 40 cm depth in indoor testbed

(silt loam) experiment is shown in Fig. 8(a). A 9−10 dB decrease in mean amplitude can be

observed when T-R separation is increased from 50 cm to 1 m. Peak amplitude of delay profile

is decreased by 5 dB from 10 cm depth to 40 cm depth at 50 cm distance, whereas this decrease

in peak amplitude is 20 dB for 1 m distance when depth is changed from 10 cm to 40 cm. Since

increase in burial depth increases the path of EM waves in soil, higher attenuation is observed.

EM waves in soil are reflected and attenuated by soil-air interface and suffers diffusion

attenuation. Additional attenuation is caused by absorption of waves in soil. Higher attenuation is

the limiting factor for communication system design. The attenuation is increased with distance

and depth because of reflection effects of lateral wave. At soil-air interface phase of lateral wave

is randomly changed, which adds constructive-destructive interference at the receiver.

6) Operation Frequency: In Fig. 8(b), the attenuation with frequency at different distances

of up to 12 m are presented. Transmitter and receiver depths are set to 20 cm. At 2 m distance,

attenuation increases by 24 dB when frequency increases from 200 MHz to 400 MHz. Similarly,

for 200 MHz, attenuation is increased from 51 dB to 92 dB (80 %) when distance increases from

50 cm to 12 m.

Higher frequencies suffer more attenuation because when EM waves propagate in the soil

their wavelength shortens due to higher permittivity of soil than the air. Hence, due to less

effects of permittivity of soil on lower frequency spectrum, it is more suitable for UG2UG

communication as larger communication distances can be achieved. In order to have minimum

attenuation, an operation frequency should be selected, for each distance and depth, such that

attenuation is minimized. This is important from WUSN topology design perspective because

deployment needs to customized to the soil type and frequency range of sensors being used for

deployment. These results form the basis of the statistical model of UG channel developed in

Section. VII.
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VII. STATISTICAL MODEL, EVALUATION AND EXPERIMENTAL VERIFICATION

To engineer an underground communication system, a statistical model of propagation in the

wireless underground channel can help in optimizing system performance, designing tailored

modulated/coding schemes, and in end-to-end capacity analysis. For example, received data

signals can be detected coherently in the absence of ISI. In this section a detailed characterization

of the underground channel is done based on the measurements of Section VI. The multipath

profiles taken in different soils under different soil moisture levels are analyzed to perform

statistical analysis of experimental data.

A. The Statistical Model

To model the wireless underground channel, our approach follows the standard OTA modeling

approaches described in [15], [23], [66], and [76], with modifications due to unique nature

of wireless propagation in the underground channel. Based on the measurement analysis, the

following assumptions are made:

1) The correlation among multipath components at different delays in the lateral, reflected,

and direct component is very small and negligible for all practical purposes. However multipaths

within each component are affected by the strongest path and hence are correlated. Therefore,

the tap-delay-lines are assumed uniformly spaced within each component.

2) At the receiver, phases are completely random with uniform distribution over [0, 2π).

To keep model tractable, arrival rate of delays within each component is kept constant, and

amplitudes of these multipaths in each component are statistically independent. This helps in

modeling the physical characteristics of the UG channel and provide ease of analysis without

losing insight into delay statistics. The order of the arrival of the lateral, direct, and reflected

component depends upon the burial depth, and distance between transmitter-receiver (T-R), be-

cause the path traversal through soil and air exhibits different wave propagation speeds depending

on the soil characteristics, and soil moisture level. Only for the T-R distances less than 50 cm,

the direct component arrives first, and as the distance increases, the lateral component reaches

at the receiver first due to higher propagation speed in the air medium. Due to significant

differences in speed of the three components in soil and air mediums, no component overlap is

observed, and the power of multipaths (gain) within each component decays before the arrival of

the next component. Moreover, in our measurements, there were not any significant detectable

components observed beyond the 100 ns time delay.
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Fig. 10: The decay of three components with exponential decay fit.

Next, statistics of amplitudes αli, αdj , and αrk at delays τli, τdi, and τri for lateral, direct,

and reflected waves, respectively, are derived. In Fig. 10, the mean amplitudes of a profile have

been shown at 50 cm distance with exponential decay fit. The analysis of the measurement data

shows that gains of multipaths within each component follow the exponential decay. Therefore,

the path amplitudes of the three components are modeled as decaying exponentials within each

component. The multipath amplitudes calculated from the arrival time τL, decay rate γL, and

amplitude αL of the lateral component. It is given as [66]

αli = αl0e
−(i−τL)/γL ∀ i > τl and i < τl + L. (10)

The αdj for the direct component is obtained from the arrival time τD, decay rate γD, and

amplitude αD of the direct component. It is expressed as:

αdj = αd0e
−(j−τD)/γD ∀ j > τd and j < τd + D. (11)

Similarly, for the reflected component, αrk is given as:

αrk = αr0e
−(k−τR)/γR ∀ k > τr and k < τr + R. (12)

Gain of first multipath is denoted as αd0, αl0, and αr0. These multipaths within each components
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Fig. 11: A realization of wireless underground channel impulse response

are calculated as follows [11]:

αd0 = Pt + 20 log10 λs − 20 log10 r1 − 8.69αsr1

−22 + 10 log10Drl ,

αr0 = Pt + 20 log10 λs − 20 log10 r2 − 8.69αsr2

+20 log10 Γ− 22 + 10 log10Drl , (13)

αl0 = Pt + 20 log10 λs − 40 log10 d− 8.69αs(ht + hr)

+20 log10 T − 22 + 10 log10Drl ,

where Pt is the transmitted power, Γ and T are reflection and transmission coefficients [11], re-

spectively, r2 is the length of the reflection path, r1 =
√

(ht − hr)2 + d2 , r2 =
√

(ht + hr)2 + d2,

where ht and hr are transmitter and receiver burial depth, and λs is the wavelength in soil [30].

In the statistical model, exponential decay is justified because the time delay depends on the

travel paths, and the path gains are affected by the soil. Therefore, the gains of the successive

multipaths depends on the delay of those multipaths. It is also important to note that, in addition

to the soil moisture, the multipath gains αli, αdj , and αrk are also impacted by soil type. For

example, in sandy soils, path gains are much higher due to lower attenuation as compared to

the silt loam and silty clay loam soils due to the less water absorption of EM waves in sandy.

This is attributed to the low water holding capacity of sandy soils. However, soil type impact on

multipaths gains αli, αdj , and αrk does not require separate modeling in (10) - (12). Therefore,



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, 2020 22

TABLE VI: The impulse response model parameters.

Parameter Description Model Values

S Speed of wave in soil [62] C/η C= 3× 108

η Refraction Index [62] η =
√√

ε′2 + ε′′2 + ε′/2 ε′, ε′′

ε′ Real part of relative permittivity of the soil [21] ε′s =



1.15
[
1 + ρb/ρs

(
εδs − 1

)
+ (mv)ν

′
(ε′fw)δ−

mv

]1/δ
− 0.68 0.3 GHz ≤ f ≤ 1.4 GHz ,[

1 + ρb/ρs
(
εδs − 1

)
+ (mv)ν

′
(ε′fw)δ −mv

]1/δ
1.4 GHz ≤ f ≤ 18 GHz ,

S = Sand in %,

C= Clay in %,

δ = 0.65,

ν′ = 1.2748− 0.519S − 0.152C,

ν′′ = 1.33797− 0.603S − 0.166C

ε′fw, ε′′fw

ε′′ Imaginary part of relative permittivity of the soil [21] ε′′s =
[
(mv)ν

′′
(ε′′fw)δ,

]1/δ

ε′fw Real part of relative permittivity of the free water [21] ε′fw = ew∞ + εw0−εw∞
1+(2πfτw)2

εw∞ = 4.9 is the limit of ε′fw

when f →∞,

εw0 is the static dielectric constant

for water,

τw is the relaxation time

for water,

and ε0 is the permittivity of

free space.

At room temperature,

2πτw = 0.58× 10−10s and

εw0 = 80.1,

effective conductivity, δoff

ε′′fw Imaginary part of relative permittivity of the free water [21] ε′′fw = 2π,fτw(εw0−εw∞)

1+(2π,fτw)2
+

δeff

,2πε0f
(ρs−ρb)
ρsmv

δeff Effective conductivity of soil [21] δeff =



0.0467 + 0.2204ρb − 0.4111S + 0.6614C

0.3 GHz ≤ f ≤ 1.4 GHz .

−1.645 + 1.939ρb − 2.25622S + 1.594C

1.4 GHz ≤ f ≤ 18 GHz

ρb is bulk density

τd Arrival time of direct component τd = (δs/S) S is speed of wave in soil

τr Arrival time of reflected component τr = 2× (δs/S) S is speed of wave in soil

τl Arrival time of reflected component τl = 2× (δs/S) + (δa/c) S is speed of wave in soil

C is speed of wave in air

αd0, αr0, αl0, Gains of the three main components

αd0 = Pt + 20 log10 λs − 20 log10 r1 − 8.69αsr1

−22 + 10 log10Drl

αr0 = Pt + 20 log10 λs − 20 log10 r2 − 8.69αsr2

+20 log10 Γ− 22 + 10 log10Drl

αl0 = Pt + 20 log10 λs − 40 log10 d− 8.69αs(ht + hr)

+20 log10 T − 22 + 10 log10Drl ,

See also analysis from Table VI.

µ and σ

αdi, αrj , αlk Path amplitudes of the three components

αli = αl0e
−(i−τL)/γL ∀, i > τl and i < τl + L

αdj = αd0e
−(j−τD)/γD ∀, j > τd and j < τd + D

αrk = αr0e
−(k−τR)/γR ∀, k > τr and k < τd + R

it is captured in the main lateral, direct, and reflected components αl0, αd0, and αr0 and is

propagated to αli, αdj , and αrk in (10) - (12) due to their dependence on αl0, αd0, and αr0.

Next, number of significant paths are determined. Number of multipaths L, D, and R in each

of the components are determined by setting a gain threshold (paths within 30 dB from peak).
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Fig. 12: Amplitude gains with Weibull distribution fit.

Multipath generation in a particular component is stopped once the path amplitude in that bin

falls below the threshold value. This results in larger number for the sandy soils, and lower

number of multipaths for silt loam, and silty clay loam soils which is also in good agreement

with empirical observations. Moreover, this number being an indicator of the channel spread,

also depends on the soil moisture. The higher soil moisture leads to lower spread, and on the

other hand lower soil moisture decrease attenuation, which leads to emergence of higher number

of multipaths falling above the threshold value and higher number of multipaths. A realization

of underground channel impulse response model is shown in Fig. 11. The model parameters are

shown in Table VI.

Up to this point, αl,i, αd,i, and αr,i are calculated based on the delays within lateral, reflected,

Algorithm 1 UG Channel Impulse Response Simulation
1: Initialization :

2: Input soil parameters

3: Obtain the soil moisture level

4: BEGIN

5: Generate the decay exponents for the lateral, direct, and reflected components

6: Determine the arrival time

7: Calculate the first multipath gain of each of the three components

8: Generate the multipaths and impulse response

9: END
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TABLE VII: The validation of impulse response model parameters.

Impulse Response Parameter Measured Modeled

RMS Delay Spread (τrms) 45.52 ns 38.84 ns

Coherence Bandwidth 439 kHz 514 kHz

and direct components which depends on the exponential decay of multipath with respect to the

main path gain in each component. This is a good realization of physical measurements. However,

if we normalize the path gains with each components by average of these gains such that αli/ᾱli,

αdj/ᾱdj , and αrk/ᾱrk, then, these amplitudes become independent of the delays to which these

are associated [66]. Accordingly, a commutative distribution of path gains normalized through

this process is shown in Fig. 12, which follows the Weibull probability distribution.

B. Model Evaluation

The model parameters required to evaluate the statistical model are summarized in the Ta-

ble VI. In the numerical evaluation, first, we need to find the the αli, αdj , and αrk and their

associated delays τli, τdi, and τri. After generating the delays and amplitudes of these three

components, other impulse response parameters are found and compared with the measurement

data. An algorithm to generate UG channel impulse response is shown in Algorithm 1.

The simulation algorithm takes soils parameters such as soil type, and soil moisture as input

and calculates the arrival times of the direct, reflected, and lateral components, τd, τr and τl.

Based on the soil type, peak power gains τd0, τr0, τl0, are determined from the Table VI. The

model parameters for peak amplitude, delays, and number of multipaths statistics for direct,

lateral and reflected components for three soil types are given in [62, Table VI].

The different statistical parameters computed from the measurement data, and the channel

model numerical evaluations are compared in Table VII. UG channel is evaluated numerically

using the the statistical model. The RMS delay spread and the coherence bandwidth parameters

are derived and compared with the parameters obtained through experimental data. Model

prediction error for the RMS delay spread is 14.67%, and for the the coherence bandwidth,

it is 14.08%. It can be observed that the difference in predicted and measured values, which

is due to model uncertainty and observational error, is less than 15%. Overall, the developed

statistical model shows a good agreement with the empirical data, and statistics of the coherence

bandwidth and the RMS delay spread prove the validity of the statistical model.
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Fig. 13: Comparison of model and empirical impulse response in silt loam.

C. Empirical Validation

A good statistical model should be able to simulate the empirical measurements with higher

accuracy. Moreover, simulated response must have the same characteristics as of the measure-

ments results. In this section, arrival of multipath components is validated with experiments

conducted in the indoor testbed. Moreover, the shape of the PDP is presented and physical

interpretations are discussed.

The speed of the wave in all three soils is found by calculating the refractive indices n based

on particle size distribution and classification of soils given in Table I. The results of these

calculations are shown in Table V. In Fig. 13, a measured PDP for a silt loam at 40 cm depth

is compared with a schematic representation of the 3-wave model for T-R separation of 50 cm.

Analysis of arrival time of three components reveals that for 50 cm distance and all burial depths,

lateral waves arrive later than the direct wave except for the 10 cm depth where lateral wave

reaches the receiver first. It can be observed that measurement data shows a strong agreement

with the model.

From Fig. 13, it can also be observed that lateral component is the strongest component

compared to the direct and reflected components. This is because direct and reflected compo-

nents are spherical waves, propagating radially outward from the antenna, whereas, the lateral

component is, initially, a plane wave that travels upward from the source to the boundary,

then horizontally as a cylindrical wave, and subsequently travels backward as a plane wave

from boundary to the point of observation. The proposed model is applicable to different

environments for wireless underground communications. Accordingly, tailored sensing, control,

and communication strategies can be developed.
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Fig. 14: Power Delay Profiles (PDP) measured at 50 cm and 1 m distance, at different depths in silt loam soil at near-saturation:

(a) 10 cm, (b) 20 cm, (c) 30 cm, (d) 40 cm.
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Fig. 15: The power delay profile in silt loam soil at different depths at: (a)) 50 cm T-R distance, (b)) 1 m T-R distance.
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(b) 50 cbar-50 cm
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Fig. 16: Power Delay Profiles (PDP) measured at 50 cm and 1 m distance, at 20 cm depths for different soil moisture levels:

(a)) 0 cbar-50 cm, (b)) 50 cbar-50 cm, (c)) 0 cbar-1 m, (d)) 50 cbar-1 m.

VIII. THE POWER DELAY PROFILE MEASUREMENTS

In this section, we present the underground channel impulse response measurements. In Fig. 14,

PDPs of 50 cm and 1 m distances are compared for all depths. The first multipath component

shown in the PDPs is the direct wave component, which is present at 18−28 ns delay at 50 cm

profile and it is not formed at 1 m profile. This is because direct wave suffers less attenuation at

50 cm and more attenuated at 1 m distance. It is observed that the lateral wave component is the

strongest in all power delay profiles and is formed at 30−40 ns delay. The delays of the lateral
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(b) Silty Clay Loam
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(c) Sandy Soil

Fig. 17: The Power Delay Profiles (PDP) measured in different soils: (a) Silt Loam, (b) Silty Clay Loam, (c) Sandy Soil.

wave is both 50 cm and 1 m distances are similar because the wave propagates much faster in

air. In general, the lateral wave component is 10 dB to 15 dB higher in power than the direct

wave component.

In Fig. 15, PDPs of the communication channels at four depths are compared. In Fig. 15(a),

the distance between the transmitter and the receiver is 50 cm, while in Fig. 15(b) the distance

is 1 m. As shown in figures, at the same distance, with the increase of the depth, the received

power of lateral wave decreases. This is more significant in the 1 m case, where the peak power

of the lateral wave in the 10 cm depth is −75 dB while it is −83 dB when the depth increases

to 40 cm. Also shown in Fig. 15(b), with the increase of the depth, the component delay also

increases. At 10 cm depth, the lateral wave arrives at 29 ns while at 40 cm it arrives at 32 ns.

Distance related delay of 10−15 ns can be also observed in all profiles at 1 m distance.

In Fig. 16, the PDP measured at 50 cm and 1 m distance, at 20 cm depths for different soil

moisture levels are shown. It can be observed that at 50 cm distance, with decrease in soil

moisture, the received power is increased and also the components at longer delay exhibit more

strength. Similar observations are made at 1m distance. It is also important to note that direct

component vanishes as distance increase, which is caused by the higher attenuation in the soil.

In Fig. 17, the measured PDPs in different soils are shown. It can be observed that due to

the low water holding capacity of the sandy soil, it has higher received power across all three

components as compared to the silt loam and silty clay loam soil.

IX. CONCLUSION

In this paper, analysis of impulse response of wireless underground channel is presented. A

3-wave based impulse response model of underground channel is developed and validated with
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measured data. Distribution of mean excess delay and the RMS delay spread is determined and

it is shown that the RMS delay spread is log-normally distributed. Effect of T-R separation on

mean amplitudes of power delay profile is showed. We have presented the impact of soil moisture

and soil types on the RMS delay spread and power gains of delay profiles. It is presented that

the RMS delay spread increases with increase in soil moisture. It is also showed that coarse-

textured soils have larger the RMS delay spreads and lower attenuation as compared to fine

and medium-textured soils. Coherence bandwidth of UG channel in relation to the RMS delay

spread is modeled and showed to be less than 1 MHz. Coherence bandwidth findings reveled

the use of OFDM for underground channel communication to have ISI free communication and

for significant performance improvements. These findings serve as important characterization

parameters of UG channel and give guidelines for design of an underground communication

system.
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