801 research outputs found

    The Commercial System Established by the Orders in Council, 1807-1808

    Get PDF

    Ontogenetic Variation in Sciaenid Otolith Morphometry with Fish Size from the Northern Gulf of Mexico

    Get PDF
    Sciaenids are a diverse family of coastal fishes and their fisheries are an important industry in the United States. In the northern Gulf of Mexico this industry is dominated by six species, specifically, red drum (Sciaenops ocellatus), black drum (Pogonias cromis), spotted seatrout (Cynoscion nebulosus), sand seatrout (C. arenarius), Atlantic croaker (Micropogonias undulatus), and spot (Leiostomus xathurus). Sagittal otoliths of all species were evaluated for changes in size and shape in relation to changes in fish total length and age across a variety of seasons and habitats. Evaluation of otolith morphology was done through computer-aided image analysis, specifically the R package ShapeR, and conventional shape descriptors. Results showed there were strong ontogenetic changes in otolith size and shape in all species. Otolith length and width were among the best predictors of fish total length in all species. Furthermore, otolith size metrics (i.e., otolith length, width, perimeter, area and mass) were used to determine the fish species with high accuracy (95.2%). Otolith shape was not a great predictor of fish total length nor species identification, as the development of protuberances on the surface of the otoliths over the lives of the fishes induced a wide range of shape complexities. The results provide a preliminary framework for using otolith morphology to evaluate the fish size and age in sciaenids and how the environment impacts their otolith morphology. This work is the first of its kind to be conducted on sciaenids in the northern Gulf of Mexico and improves upon our biologic and ecologic knowledge of these socioeconomically important fishes

    Remarks on computing the Grothendieck rings of C*-algebras

    Full text link
    In this paper, we present a captivating construction by Grothendieck, originally formulated for algebraic varieties, and adapt it to the realm of C*-algebras. Our main objective is to investigate the conditions under which this particular class of C*-algebras possesses a nontrivial Grothendieck ring. To achieve this, we explore the existence of nontrivial characters, which significantly enriches our understanding of these algebras. In particular, we conduct a detailed study of rings of C*-algebras over C\mathbb{C}, R\mathbb{R}, and H\mathbb{H}

    Noncommutative resolutions of discriminants

    Get PDF
    We give an introduction to the McKay correspondence and its connection to quotients of Cn\mathbb{C}^n by finite reflection groups. This yields a natural construction of noncommutative resolutions of the discriminants of these reflection groups. This paper is an extended version of E.F.'s talk with the same title delivered at the ICRA.Comment: 15 pages, 4 figures. Final version to appear in Contemporary Mathematics 705, "Representations of Algebras

    A McKay correspondence for reflection groups

    Get PDF
    We construct a noncommutative desingularization of the discriminant of a finite reflection group G as a quotient of the skew group ring A=S∗G. If G is generated by order 2 reflections, then this quotient identifies with the endomorphism ring of the reflection arrangement A(G) viewed as a module over the coordinate ring SG/(Δ) of the discriminant of G. This yields, in particular, a correspondence between the nontrivial irreducible representations of G to certain maximal Cohen–Macaulay modules over the coordinate ring SG/(Δ). These maximal Cohen–Macaulay modules are precisely the nonisomorphic direct summands of the coordinate ring of the reflection arrangement A(G) viewed as a module over SG/(Δ). We identify some of the corresponding matrix factorizations, namely, the so-called logarithmic (co-)residues of the discriminant

    A membrane cytoskeleton from Dictyostelium discoideum. II. Integral proteins mediate the binding of plasma membranes to F-actin affinity beads

    Get PDF
    In novel, low-speed sedimentation assays, highly purified, sonicated Dictyostelium discoideum plasma membrane fragments bind to F-actin beads (fluorescein-labeled F-actin on antifluorescein IgG-Sephacryl S-1000 beads). Binding was found to be (a) specific, since beads containing bound fluorescein-labeled ovalbumin or beads without bound fluorescein-labeled protein do not bind membranes, (b) saturable at approximately 0.6 microgram of membrane protein per microgram of bead-bound F-actin, (c) rapid with a t1/2 of 4-20 min, and (d) apparently of reasonable affinity since the off rate is too slow to be measured by present techniques. Using low-speed sedimentation assays, we found that sonicated plasma membrane fragments, after extraction with chaotropes, still bind F-actin beads. Heat-denatured membranes, proteolyzed membranes, and D. discoideum lipid vesicles did not bind F-actin beads. These results indicate that integral membrane proteins are responsible for the binding between sonicated membrane fragments and F-actin on beads. This finding agrees with the previous observation that integral proteins mediate interactions between D. discoideum plasma membranes and F-actin in solution (Luna, E.J., V. M. Fowler, J. Swanson, D. Branton, and D. L. Taylor, 1981, J. Cell Biol., 88:396-409). We conclude that low-speed sedimentation assays using F-actin beads are a reliable method for monitoring the associations between F-actin and membranes. Since these assays are relatively quantitative and require only micrograms of membranes and F-actin, they are a significant improvement over other existing techniques for exploring the biochemical details of F-actin-membrane interactions. Using F-actin beads as an affinity column for actin-binding proteins, we show that at least 12 integral polypeptides in D. discoideum plasma membranes bind to F-actin directly or indirectly. At least four of these polypeptides appear to span the membrane and are thus candidates for direct transmembrane links between the cytoskeleton and the cell surface

    The influence of deposit-feeding on chlorophyll-a degradation in coastal marine sediments

    Get PDF
    To determine how macrofaunal activity affects rates and mechanisms of Chlorophyll-a (Chl-a) decomposition, we measured Chl-a concentrations during laboratory incubations of surface sediment with varying abundances of a subsurface deposit-feeder, Yoldia limatula. Decomposition patterns of Chl-a in sediment cores with and without a layer of algal-enriched sediment added to the surface were compared. Decomposition rate constants, kd, were calculated from the loss of reactive Chl-a and further quantified using a nonsteady state, depth-dependent, reaction-diffusion model. Values of kd decreased approximately exponentially with depth and were directly proportional to the number of Yoldia present. Yoldia increased the kd of both natural sedimentary Chl-a and algal enriched Chl-a in the upper 2 cm by up to 5.7×. Surface sediment porosity, penetration depths of a conservative tracer of diffusion (Br-), and oxidized metabolic substrates (e.g. Fe(III)) all increased significantly in the presence of Yoldia. Macrofaunal bioturbation increased the importance of suboxic degradation pathways. These experiments demonstrated that organic compounds from a single source can have a continuum of degradation rate constants as a function of biogenically determined environmental conditions (Chl-a kd ˜ 0.0043-0.20 d-1). In particular, Chl-a can have a continuum of kd values related to redox conditions, transport, and macrofauna abundance as a function of depth

    Noncommutative (Crepant) Desingularizations and the Global Spectrum of Commutative Rings

    Get PDF
    In this paper we study endomorphism rings of finite global dimension over not necessarily normal commutative rings. These objects have recently attracted attention as noncommutative (crepant) resolutions, or NC(C)Rs, of singularities. We propose a notion of a NCCR over any commutative ring that appears weaker but generalizes all previous notions. Our results yield strong necessary and sufficient conditions for the existence of such objects in many cases of interest. We also give new examples of NCRs of curve singularities, regular local rings and normal crossing singularities. Moreover, we introduce and study the global spectrum of a ring R, that is, the set of all possible finite global dimensions of endomorphism rings of MCM R-modules. Finally, we use a variety of methods to compute global dimension for many endomorphism rings

    Sensitivity analysis of circadian entrainment in the space of phase response curves

    Full text link
    Sensitivity analysis is a classical and fundamental tool to evaluate the role of a given parameter in a given system characteristic. Because the phase response curve is a fundamental input--output characteristic of oscillators, we developed a sensitivity analysis for oscillator models in the space of phase response curves. The proposed tool can be applied to high-dimensional oscillator models without facing the curse of dimensionality obstacle associated with numerical exploration of the parameter space. Application of this tool to a state-of-the-art model of circadian rhythms suggests that it can be useful and instrumental to biological investigations.Comment: 22 pages, 8 figures. Correction of a mistake in Definition 2.1. arXiv admin note: text overlap with arXiv:1206.414

    Study of Photon Dominated Regions in Cepheus B

    Get PDF
    Aim: The aim of the paper is to understand the emission from the photon dominated regions in Cepheus B, estimate the column densities of neutral carbon in bulk of the gas in Cepheus B and to derive constraints on the factors which determine the abundance of neutral carbon relative to CO. Methods: This paper presents 15'x15' fully sampled maps of CI at 492 GHz and 12CO 4-3 observed with KOSMA at 1' resolution. The new observations have been combined with the FCRAO 12CO 1-0, IRAM-30m 13CO 2-1 and C18O 1-0 data, and far-infrared continuum data from HIRES/IRAS. The KOSMA-tau spherical PDR model has been used to understand the CI and CO emission from the PDRs in Cepheus B and to explain the observed variation of the relative abundances of both C^0 and CO. Results: The emission from the PDR associated with Cepheus B is primarily at V_LSR between -14 and -11 km s^-1. We estimate about 23% of the observed CII emission from the molecular hotspot is due to the ionized gas in the HII region. Over bulk of the material the C^0 column density does not change significantly, (2.0+-1.4)x10^17 cm^-2, although the CO column density changes by an order of magnitude. The observed \cbyco abundance ratio varies between 0.06 and 4 in Cepheus B. We find an anti-correlation of the observed C/CO abundance ratio with the observed hydrogen column density, which holds even when all previous observations providing C/CO ratios are included. Here we show that this observed variation of C/CO abundance with total column density can be explained only by clumpy PDRs consisting of an ensemble of clumps. At high H2 column densities high mass clumps, which exhibit low C/CO abundance, dominate, while at low column densities, low mass clumps with high C/CO abundance dominate.Comment: 12 pages, 10 figures, Accepted for publication in A&
    • …
    corecore