268 research outputs found

    High-Intensity and High-Brightness Source of Moderated Positrons Using a Brilliant gamma Beam

    Full text link
    Presently large efforts are conducted towards the development of highly brilliant gamma beams via Compton back scattering of photons from a high-brilliance electron beam, either on the basis of a normal-conducting electron linac or a (superconducting) Energy Recovery Linac (ERL). Particularly ERL's provide an extremely brilliant electron beam, thus enabling to generate highest-quality gamma beams. A 2.5 MeV gamma beam with an envisaged intensity of 10^15 s^-1, as ultimately envisaged for an ERL-based gamma-beam facility, narrow band width (10^-3), and extremely low emittance (10^-4 mm^2 mrad^2) offers the possibility to produce a high-intensity bright polarized positron beam. Pair production in a face-on irradiated W converter foil (200 micron thick, 10 mm long) would lead to the emission of 2 x 10^13 (fast) positrons per second, which is four orders of magnitude higher compared to strong radioactive ^22Na sources conventionally used in the laboratory.Using a stack of converter foils and subsequent positron moderation, a high-intensity low-energy beam of moderated positrons can be produced. Two different source setups are presented: a high-brightness positron beam with a diameter as low as 0.2 mm, and a high-intensity beam of 3 x 10^11 moderated positrons per second. Hence, profiting from an improved moderation efficiency, the envisaged positron intensity would exceed that of present high-intensity positron sources by a factor of 100.Comment: 9 pages, 3 figure

    Detection and imaging of the oxygen deficiency in single crystalline YBa2_{\text{2}}Cu3_{\text{3}}O7δ_{\text{7}-\delta} thin films using a positron beam

    Full text link
    Single crystalline YBa2_{\text{2}}Cu3_{\text{3}}O7δ_{\text{7}-\delta} (YBCO) thin films were grown by pulsed laser deposition (PLD) in order to probe the oxygen deficiency δ\delta using a mono-energetic positron beam. The sample set covered a large range of δ\delta (0.191<δ\delta<0.791) yielding a variation of the critical temperature TcT_{\text{c}} between 25 and 90\,K. We found a linear correlation between the Doppler broadening of the positron electron annihilation line and δ\delta determined by X-ray diffraction (XRD). Both, the origin of the found correlation and the influence of metallic vacancies, were examined with the aid of ab-initio calculations that allowed us (i) to exclude the presence of Y vacancies and (ii) to ensure that positrons still probe δ\delta despite the potential presence of Ba or Cu vacancies. In addition, by scanning with the positron beam the spatial variation of δ\delta could be analyzed. It was found to fluctuate with a standard deviation of up to 0.079(5)0.079(5) within a single YBCO film

    Investigation of the chemical vicinity of crystal defects in ion-irradiated Mg and AZ31 with coincident Doppler broadening spectroscopy

    Full text link
    Crystal defects in magnesium and magnesium based alloys like AZ31 are of major importance for the understanding of their macroscopic properties. We have investigated defects and their chemical surrounding in Mg and AZ31 on an atomic scale with Doppler broadening spectroscopy of the positron annihilation radiation. In these Doppler spectra the chemical information and the defect contribution have to be thoroughly separated. For this reason samples of annealed Mg were irradiated with Mg-ions in order to create exclusively defects. In addition Al- and Zn-ion irradiation on Mg-samples was performed in order to create samples with defects and impurity atoms. The ion irradiated area on the samples was investigated with laterally and depth resolved positron Doppler broadening spectroscopy (DBS) and compared with preceding SRIM-simulations of the vacancy distribution, which are in excellent agreement. The investigation of the chemical vicinity of crystal defects in AZ31 was performed with coincident Doppler broadening spectroscopy (CDBS) by comparing Mg-ion irradiated AZ31 with Mg-ion irradiated Mg. No formation of solute-vacancy complexes was found due to the ion irradiation, despite the high defect mobility.Comment: Submitted to Physical Review B on March 20 20076. Revised version submitted on September 28 2007. Accepted on October 19 200

    Компресорні установки

    Get PDF
    Зміст видання відповідає освітньо-професійній програмі підготовки кадрів з вищою освітою напряму „Електротехніка та електротехнології“, зокрема – програмі дисципліни „Енергетичні установки“. Розглянуто основні положення теорії компресорних машин, будову, експлуатаційні особливості та методи регулювання режиму роботи поршневих, ротаційних, гвинтових, водокільцевих і відцентрових компресорів. Посібник адресовано студентам спеціальності „Енергетичний менеджмент“, які вивчають дисципліну „Енергетичні установки“. Він може бути корисним також студентам напрямів „Гірництво“, „Інженерна механіка“ та „Електромеханіка“ при вивченні стаціонарних установок гірничих підприємств

    Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance

    Full text link
    We propose to search for neutron halo isomers populated via γ\gamma-capture in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the 4s1/24s_{1/2} or 3s1/23s_{1/2} neutron shell model state reaches zero binding energy. These halo nuclei can be produced for the first time with new γ\gamma-beams of high intensity and small band width (\le 0.1%) achievable via Compton back-scattering off brilliant electron beams thus offering a promising perspective to selectively populate these isomers with small separation energies of 1 eV to a few keV. Similar to single-neutron halo states for very light, extremely neutron-rich, radioactive nuclei \cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and short-range nuclear force allows the neutron to tunnel far out into free space much beyond the nuclear core radius. This results in prolonged half lives of the isomers for the γ\gamma-decay back to the ground state in the 100 ps-μ\mus range. Similar to the treatment of photodisintegration of the deuteron, the neutron release from the neutron halo isomer via a second, low-energy, intense photon beam has a known much larger cross section with a typical energy threshold behavior. In the second step, the neutrons can be released as a low-energy, pulsed, polarized neutron beam of high intensity and high brilliance, possibly being much superior to presently existing beams from reactors or spallation neutron sources.Comment: accepted for publication in Applied Physics

    Injection of Positrons into a Dense Electron Cloud in a Magnetic Dipole Trap

    Full text link
    The creation of an electron space charge in a dipole magnetic trap and the subsequent injection of positrons has been experimentally demonstrated. Positrons (5eV) were magnetically guided from their source and injected into the trapping field generated by a permanent magnet (0.6T at the poles) using a cross field E ×\times B drift, requiring tailored electrostatic and magnetic fields. The electron cloud is created by thermionic emission from a tungsten filament. The maximum space charge potential of the electron cloud reaches -42V, which is consistent with an average electron density of (4±24 \pm 2) ×1012\times 10^{12} m3\text{m}^{-3} and a Debye length of (2±12 \pm 1) cm\text{cm}. We demonstrate that the presence of this space potential does not hamper efficient positron injection. Understanding the effects of the negative space charge on the injection and confinement of positrons represents an important intermediate step towards the production of a confined electron-positron pair plasma

    Practical implications of GPR investigation using 3D data reconstruction and transmission tomography

    Get PDF
    Non-destructive investigation using ground penetrating radar is becoming more popular in the inspection of civil structures. Currently, traditional 2D imaging is used as a preliminary tool to fi nd possible areas of interest for more detailed inspection, which can be accomplished by more advanced techniques like 3D image reconstruction or tomography. In this paper, a general overview of the work done at University of Minho regarding these techniques is presented, together with their limitations and advantages over typical radargrams, with implications for civil engineering applications. For this purpose, data acquisition on two large masonry walls and one large concrete specimen have been carried out, using refl ection mode, 3D reconstruction and transmission tomography. The specimens have been specially built for non-destructive inspection techniques testing, incorporating different materials and internal voids. Radar tomography and 3D image reconstruction techniques provided much more detailed information about structural integrity and shapes and location of the voids, when compared to 2D imaging originally used for potential target identification.Fundação para a Ciência e a Tecnologia (FCT) - POCTI SFRH/BD/6409/2001"Sustainable Bridges" European project - FP6-PLT-0165
    corecore