Presently large efforts are conducted towards the development of highly
brilliant gamma beams via Compton back scattering of photons from a
high-brilliance electron beam, either on the basis of a normal-conducting
electron linac or a (superconducting) Energy Recovery Linac (ERL). Particularly
ERL's provide an extremely brilliant electron beam, thus enabling to generate
highest-quality gamma beams. A 2.5 MeV gamma beam with an envisaged intensity
of 10^15 s^-1, as ultimately envisaged for an ERL-based gamma-beam facility,
narrow band width (10^-3), and extremely low emittance (10^-4 mm^2 mrad^2)
offers the possibility to produce a high-intensity bright polarized positron
beam. Pair production in a face-on irradiated W converter foil (200 micron
thick, 10 mm long) would lead to the emission of 2 x 10^13 (fast) positrons per
second, which is four orders of magnitude higher compared to strong radioactive
^22Na sources conventionally used in the laboratory.Using a stack of converter
foils and subsequent positron moderation, a high-intensity low-energy beam of
moderated positrons can be produced. Two different source setups are presented:
a high-brightness positron beam with a diameter as low as 0.2 mm, and a
high-intensity beam of 3 x 10^11 moderated positrons per second. Hence,
profiting from an improved moderation efficiency, the envisaged positron
intensity would exceed that of present high-intensity positron sources by a
factor of 100.Comment: 9 pages, 3 figure