3,142 research outputs found

    Improved Limits on Sterile Neutrino Dark Matter using Full-Sky Fermi Gamma-Ray Burst Monitor Data

    Get PDF
    A sterile neutrino of ~keV mass is a well motivated dark matter candidate. Its decay generates an X-ray line that offers a unique target for X-ray telescopes. For the first time, we use the Gamma-ray Burst Monitor (GBM) onboard the Fermi Gamma-Ray Space Telescope to search for sterile neutrino decay lines; our analysis covers the energy range 10-25 keV (sterile neutrino mass 20-50 keV), which is inaccessible to X-ray and gamma-ray satellites such as Chandra, Suzaku, XMM-Newton, and INTEGRAL. The extremely wide field of view of the GBM enables a large fraction of the Milky Way dark matter halo to be probed. After implementing careful data cuts, we obtain ~53 days of full sky observational data. We observe an excess of photons towards the Galactic Center, as expected from astrophysical emission. We search for sterile neutrino decay lines in the energy spectrum, and find no significant signal. From this, we obtain upper limits on the sterile neutrino mixing angle as a function of mass. In the sterile neutrino mass range 25-40 keV, we improve upon previous upper limits by approximately an order of magnitude. Better understanding of detector and astrophysical backgrounds, as well as detector response, will further improve the sensitivity of a search with the GBM.Comment: 16 pages, 11 figures, references added, discussion expanded, some typos fixed, matches the published versio

    NuSTAR Tests of Sterile-Neutrino Dark Matter: New Galactic Bulge Observations and Combined Impact

    Full text link
    We analyze two dedicated NuSTAR observations with exposure ∼190{\sim}190 ks located ∼10∘{\sim}10^\circ from the Galactic plane, one above and the other below, to search for x-ray lines from the radiative decay of sterile-neutrino dark matter. These fields were chosen to minimize astrophysical x-ray backgrounds while remaining near the densest region of the dark matter halo. We find no evidence of anomalous x-ray lines in the energy range 5--20 keV, corresponding to sterile neutrino masses 10--40 keV. Interpreted in the context of sterile neutrinos produced via neutrino mixing, these observations provide the leading constraints in the mass range 10--12 keV, improving upon previous constraints in this range by a factor ∼2{\sim}2. We also compare our results to Monte Carlo simulations, showing that the fluctuations in our derived limit are not dominated by systematic effects. An updated model of the instrumental background, which is currently under development, will improve NuSTAR's sensitivity to anomalous x-ray lines, particularly for energies 3--5 keV.Comment: 16 pages, 5 figures. Text updated to match published version in PRD. Conclusions unchange

    Exact Bond Ordered Ground State for the Transition Between the Band and the Mott Insulator

    Full text link
    We derive an effective Hamiltonian HeffH_{eff} for an ionic Hubbard chain, valid for t≪U,Δt\ll U,\Delta , where tt is the hopping, UU the Coulomb repulsion, and Δ\Delta the charge transfer energy. HeffH_{eff} is the minimal model for describing the transition from the band insulator (BI) (Δ−U≫t\Delta -U\gg t) and the Mott insulator (MI) (U−Δ≫tU-\Delta \gg t). Using spin-particle transformations (Phys. Rev. Lett. \textbf{86}, 1082 (2001)), we map Heff(U=Δ)H_{eff}(U=\Delta) into an SU(3) antiferromagnetic Heisenberg model whose exact ground state is known. In this way, we show rigorously that a spontaneously dimerized insulating ferroelectric phase appears in the transition region between the BI and MI

    Polar distortions in hydrogen bonded organic ferroelectrics

    Full text link
    Although ferroelectric compounds containing hydrogen bonds were among the first to be discovered, organic ferroelectrics are relatively rare. The discovery of high polarization at room temperature in croconic acid [Nature \textbf{463}, 789 (2010)] has led to a renewed interest in organic ferroelectrics. We present an ab-initio study of two ferroelectric organic molecular crystals, 1-cyclobutene-1,2-dicarboxylic acid (CBDC) and 2-phenylmalondialdehyde (PhMDA). By using a distortion-mode analysis we shed light on the microscopic mechanisms contributing to the polarization, which we find to be as large as 14.3 and 7.0\,μ\muC/cm2^{2} for CBDC and PhMDA respectively. These results suggest that it may be fruitful to search among known but poorly characterized organic compounds for organic ferroelectrics with enhanced polar properties suitable for device applications.Comment: Submitte

    Phosphorylation of conserved casein kinase sites regulates cAMP-response element-binding protein DNA binding in Drosophila

    Get PDF
    The Drosophila homolog of cAMP-response element-binding protein (CREB), dCREB2, exists with serine 231, equivalent to mammalian serine 133, in a predominantly phosphorylated state. Thus, unlike the mammalian protein, the primary regulation of dCREB2 may occur at a different step from serine 231 phosphorylation. Although bacterially expressed dCREB2 bound cAMP-response element sites, protein from Drosophila extracts was unable to do so unless treated with phosphatase. Phosphorylation of recombinant protein by casein kinase (CK) I or II, but not calcium-calmodulin kinase II or protein kinase A, inhibited DNA binding. Up to four conserved CK sites likely to be phosphorylated in vivo were responsible for this effect, and these sites were phosphorylated by a kinase present in Drosophila cell extracts that biochemically resembles CKII. We propose that the relative importance of different signaling pathways in regulating CREB activity may differ between Drosophila and mammals. In Drosophila, the dephosphorylation of CK sites appears to be the major regulatory step, while phosphorylation of serine 231 is necessary but secondary

    Antisymmetrization of a Mean Field Calculation of the T-Matrix

    Full text link
    The usual definition of the prior(post) interaction V(V′)V(V^\prime ) between projectile and target (resp. ejectile and residual target) being contradictory with full antisymmetrization between nucleons, an explicit antisymmetrization projector A{\cal A} must be included in the definition of the transition operator, T≡V′A+V′AGV. T\equiv V^\prime{\cal A}+V^\prime{\cal A}GV. We derive the suitably antisymmetrized mean field equations leading to a non perturbative estimate of TT. The theory is illustrated by a calculation of forward α\alpha-α\alpha scattering, making use of self consistent symmetries.Comment: 30 pages, no figures, plain TeX, SPHT/93/14

    Dual-frequency VLBI study of Centaurus A on sub-parsec scales

    Get PDF
    Centaurus A is the closest active galactic nucleus. High resolution imaging using Very Long Baseline Interferometry (VLBI) enables us to study the spectral and kinematic behavior of the radio jet-counterjet system on sub-parsec scales, providing essential information for jet emission and formation models. Our aim is to study the structure and spectral shape of the emission from the central-parsec region of Cen A. As a target of the Southern Hemisphere VLBI monitoring program TANAMI (Tracking Active Galactic Nuclei with Milliarcsecond Interferometry), VLBI observations of Cen A are made regularly at 8.4 and 22.3 GHz with the Australian Long Baseline Array (LBA) and associated telescopes in Antarctica, Chile, and South Africa. The first dual-frequency images of this source are presented along with the resulting spectral index map. An angular resolution of 0.4 mas x 0.7 mas is achieved at 8.4 GHz, corresponding to a linear scale of less than 0.013 pc. Hence, we obtain the highest resolution VLBI image of Cen A, comparable to previous space-VLBI observations. By combining with the 22.3 GHz image, which has been taken without contributing transoceanic baselines at somewhat lower resolution, we present the corresponding dual-frequency spectral index distribution along the sub-parsec scale jet revealing the putative emission regions for recently detected gamma-rays from the core region by Fermi/LAT. We resolve the innermost structure of the milliarcsecond scale jet and counterjet system of Cen A into discrete components. The simultaneous observations at two frequencies provide the highest resolved spectral index map of an AGN jet allowing us to identify multiple possible sites as the origin of the high energy emission.Comment: 5 pages, 3 figures (1 color); A&A, accepte

    8Li+alpha decay of 12B and its possible astrophysical implications

    Full text link
    The 12B excitation energy spectrum has been obtained from coincidence measurements of the 9Be+7Li -> 2alpha+8Li reaction at E{0}=52 MeV. The decay of the states at excitations between 10 and 16 Mev into alpha$+8Li has been observed for the first time. Observed alpha-decay indicates possible cluster structure of the 12B excited states. The influence of these states on the cross section of the astrophysically important 8Li(alpha,n)11B and 9Be+t reactions is discussed and the results are compared with existing results.Comment: accepted for publication in Europhysics Letter
    • …
    corecore